А Королев, рассказывают, когда у него однажды попросил совета конструктор (и едва ли к Королеву обращались с пустяками), встал из-за стола и ехидно предложил:
– Давай-ка сядь в мое кресло! Чувствуешь, как оно жжет?.. Теперь иди и сам решай свои проблемы, а мне хватит моих!
А Туполев «видел» технику «насквозь»… Увидел готовую к первому полету опытную машину, сказал: «Не полетит!» – и она не взлетела. Бегала потом по аэродрому, а от земли оторваться так и не смогла.
В лаборатории прочностных испытаний ЦАГИ должны были испытать самолет, определить его слабые места. Андрей Николаевич показал: «Вот здесь сломается!» И конструкция сломалась именно там. Опытный торпедный катер, сконструированный в туполевском ОКБ, не развивал предусмотренной максимальной скорости. Туполев попросил поднять катер из воды, обошел его, остановился у винта, взял молоток, постучал им по кромкам лопастей – и катер достиг скорости выше расчетной.
О Туполеве, конструкторском старейшине, подобных историй ходит среди инженеров больше, чем о ком-либо другом, некоторые из них уже и в психологические труды попали (есть теперь такая ветвь этой науки – инженерная психология). Принесли Андрею Николаевичу чертеж – решение стыка крыла и фюзеляжа, зоны, в которой легко рождаются в полете различные вредные воздушные вихри. Поэтому стыки конструкторы продумывают особо, тщательно сглаживают, «зализывают». А Туполев принялся мягким карандашом, толстыми линиями исправлять чертеж безо всяких расчетов, на глаз. Главный аэродинамик ОКБ молча страдал у него за спиной, «старик» же продолжал рисовать, стирал нарисованное резинкой, а то и пальцем, и снова рисовал… Совсем «извозил» чертеж, приговаривая: «Эдак-то оно лучше смотрится, а ты, знаешь, не расстраивайся зря…»
Эти примеры удивительной способности А.Н.Туполева проникать в скрытую пока от науки суть явлений – способности, основанной на воспринятом им опыте десятков поколений конструкторов, – записаны со слов ветеранов его ОКБ. Допустим, в чем-то они здесь преувеличивают, как принято у бывалых людей: удивили, а вы хотите – верьте, хотите – нет… Но вот что вспоминает уже не просто ветеран во время перекура, а академик А.Н.Крылов о кораблестроителе Петре Акиндиновиче Титове. Главный инженер франко-русского судостроительного завода в Петербурге, конструктор крейсеров и броненосцев П.А.Титов не имел специального образования. Алгебры и то не знал. Размеры силовых деталей судового корпуса намечал только на глаз, иначе просто не умел, но, как бы потом эти назначенные им размеры ни проверяли расчетами, ошибок не находили.
Сам Туполев уверял, что мать его интуиции – информация. Возможно, так оно и было лет тридцать назад, а сейчас память машин уравнивает в этом отношении, талантливого инженера с просто грамотным. Считается, и справедливо, что иные длительные споры о наилучшем решении технической задачи надо попросту вовремя прекращать твердым словом: делать так! И все будет как надо, ведь очень хороших, блестящих решений в технике почти всегда бывает несколько. И ахнут рядовые конструкторы: поразительно!..
Это бывает. Меня же изумил другой случай. Я работал тогда в ОКБ генерального авиаконструктора П.О.Сухого. Однажды Сухой просматривал чертежи поворотного стабилизатора и сказал нам, что опорный ролик, который при отклонении стабилизатора должен катиться по рельсу, поставлен неправильно: его нужно повернуть так-то и так-то, иначе он не покатится, а станет скрести по рельсу. В высшей степени корректный, в английском, как у нас про него говорили, стиле. Сухой ни на чем не настаивал (хотя в решительные моменты мог сказать в той же безукоризненно вежливой манере: «Я вас прошу – и прошу считать мою просьбу приказанием!»), а всего лишь советовал еще раз проверить взаимное положение ролика и рельса, когда вся эта конструкция изогнется под воздушной нагрузкой.
Принесли расчеты. Все было проверено-перепроверено.
– Как хотите…
Сделали в цехе стабилизатор, нагрузили его в лаборатории прочностных испытаний – и ролик стал скрести по рельсу. Прав был Сухой…
Особенность работы Р.Л.Бартини, то, что в наибольшей степени отличало его от других крупных конструкторов, тоже «особенных», – физико-математический подход к техническим задачам и способность находить простые, наглядные модели сложнейших явлений и делать эти модели, а с их помощью и явления доступными научному анализу. Остановимся на истории некоторых его решений, поскольку сейчас этот путь становится все более популярным у инженеров.
Еще в Милане Роберто аналитически искал наивыгоднейшие профили крыла самолета. Не открыв тогда никому ранее не ведомую перспективу такого анализа, он все же увидел ее яснее, чем иные признанные авторитеты, – не подозревая еще, что и в XX веке первооткрывателю в науке приходится защищать не только свои находки, но и способы поиска и даже инструмент, которым добываются клады природы. Для инженера математика – всего лишь инструмент, им задолго до Бартини с блеском пользовались в аэро– и газодинамике Н.Е.Жуковский, Л.Прандтль, С.А.Чаплыгин, Т.Карман, но в те же примерно годы Роберт Годдард, впоследствии первым произведший запуск ракеты с жидкостным ракетным двигателем, писал в книге «Метод достижения максимальных высот», что математически этот метод непостижим. А директор авиационной школы в Лозанне – что «аэродинамика есть наука вполне эмпирическая», и об аэродинамических законах – что «нет ничего более опасного, чем применять математический аппарат с целью достичь построения этих законов».
Вот как: нет ничего более опасного! Совершенно то же настроение, что у коллежского регистратора в чеховской «Свадьбе»: «А по моему взгляду, электрическое освещение – одно только жульничество… Ты давай огня – понимаешь? – огня, который натуральный, а не умственный!»
Аналитически найденные профили обтекания Бартини применял впоследствии на всех своих машинах. И, уже проектируя первую из них, «Сталь-6», он сделал, наметил следующие шаги в этом направлении: приступил к физико-математическому исследованию взаимодействий отдельных частей летательного аппарата, в первую очередь крыла и мотора, в воздушном потоке. В то время считалось, что функции у всех частей самолета разные, несовместимые. Крыло самостоятельно, почти независимо от смежных агрегатов, создает подъемную силу, двигатель – тягу, в фюзеляже размещаются грузы, пассажиры, экипаж… Чтобы несколько уменьшить суммарное аэродинамическое сопротивление самолета, все стыки его частей, все переходные зоны делались плавными, укрывались зализами, формы агрегатов, в частности силовых установок, облагораживались разного рода обтекателями, капотами, но для поршневого двигателя с винтом эти возможности были уже как будто исчерпаны. Речь здесь могла идти лишь о мелких усовершенствованиях, хотя в условиях жестокой борьбы за десяток-другой километров в час нельзя было пренебрегать и ничтожными процентами выгоды. Начиная примерно с 1932—1933 годов, пишет немецкий исследователь Г.Бок, «дальнейшее улучшение летных данных пошло по пути применения все более мощных моторов…»
Первой попыткой Бартини объединить функции крыла и мотора, заставить их помогать друг другу как раз и была убранная в крыло система охлаждения мотора на «Стали-6». Не все посвященные в проект этой машины оценили ее сразу и в полной мере, а вот летчик-испытатель Андрей Борисович Юмашев «увидел» ее мгновенно, не будучи еще знаком ни с интуитивными соображениями конструкторов, ни с расчетами, ни с сомнениями, которых тоже хватало. По программе испытаний, он должен был сначала погонять «Сталь-6» по земле, потом доложить конструкторам и начальству, как она себя ведет при пробежках, «просится» ли в воздух… Так он и поступил: покатался по земле, разгоняясь, тормозя, а потом махнул рукой механикам, которые бежали рядом, придерживая машину за концы крыльев (так полагалось при первой пробежке), – отцепитесь! – и взлетел без разрешения.
Был скандал, сам Бартини скандалил, насколько он вообще умел это делать, – но победителей не судят. Юмашев был доволен машиной.