Использование сульфата аммония или других солей для осаждения белков в растворе называется высаливанием. Высаливание, производимое добавлением соли порциями для разделения белков в растворе на более и менее растворимые, называется солевым фракционированием.
Еще в начале XX века методом солевого фракционирования было установлено, что существует две большие группы плазменных белков. Одна группа осаждалась, когда плазма насыщалась сульфатом аммония наполовину (полунасыщенный раствор). Это были плазменные глобулины. Если отфильтровать осажденный глобулин и добавить к прозрачному фильтрату сульфат аммония до получения насыщенного раствора, оставшийся белок оседал на дно. Это был плазменный альбумин.
В каждых 100 миллилитрах плазмы крови содержится около 6 граммов белков. Из них 2,5 грамма приходится на плазменные глобулины и около 3,5 грамма — на плазменные альбумины.
Молекулы альбуминов меньше молекул глобулинов. В среднем их молекулярная масса равна 69 000 — чуть тяжелее молекулы гемоглобина. Молекулы глобулинов имеют разный размер, и их средняя молекулярная масса — 200 000.
Поскольку молекулы глобулина в три раза больше молекул альбумина, 1 грамм альбумина содержит в три раза больше молекул, чем 1 грамм глобулина. Так как пропорция их в плазме составляет 5 к 7, значит, примерно четыре из пяти молекул плазменных белков представлены альбумином.
Осмотическое давление, описанное в главе 10, зависит от количества белковых молекул в плазме, а не от массы индивидуальных молекул. Следовательно, плазменный альбумин ответствен за 80 % осмотического давления. Альбумин высушивают, измельчают в порошок и запечатывают в контейнеры, после чего его можно использовать, добавив минералы и воду.
Альбумин также обеспечивает львиную долю питательной ценности плазменных белков и является средством транспортировки для более мелких молекул. Однако было бы ошибочно недооценивать глобулины. Они также обладают весьма полезными свойствами.
Осаждение сульфатом аммония является довольно грубым методом разделения, и для выделения плазменных белков разработали лучшие методы.
О двух основных я уже упоминал ранее. Один из них — фракционирование при помощи спирта — метод Кона, о котором говорилось в конце главы 11. Второй — электрофорез, упоминавшийся в связи с аномальными разновидностями гемоглобина в главе 7.
Электрофорез белков плазмы — распространенный в наше время метод. Когда плазменные белки разделяются в результате различных скоростей движения в электрическом поле, самым быстродвигающимся оказывается альбумин. Он отделяется почти сразу.
Однако плазменные глобулины состоят из нескольких типов молекул, поэтому под воздействием электрического поля они разделяются на группы. Существует три основные подгруппы глобулинов: альфа-глобулины, бета-глобулины и гамма-глобулины — альфа-глобулины двигаются быстрее всех, бета- чуть медленнее, а гамма- самые медленные. («Гамма» — это третья буква греческого алфавита.)
Каждая из этих групп, в свою очередь, состоит из разных типов молекул, и длительный электрофорез может разделить группы альфа- и бета- на подгруппы. Поэтому мы можем говорить о двух разновидностях альфа-глобулинов: альфа1- и альфа2-.
Однако самого пристального внимания заслуживают гамма-глобулины. В каждых 100 миллилитрах плазмы содержится 0,66 грамма гамма-глобулинов, которые составляют всего 11 % от веса всех плазменных протеинов. Тем не менее они особенно важны.
Например, при многих инфекциях количество гамма-глобулинов в крови существенно возрастает. Это было замечено еще до того, как электрофорез создал основу для разделения глобулинов на группы альфа-, бета- и гамма-.
Когда белки плазмы разделяли только на глобулины и альбумин, речь шла о соотношении А/Г, то есть соотношении массы альбумина и массы глобулинов в крови. Например, если в 100 миллилитрах нормальной плазмы содержится 31/2 грамма альбумина и 21/2 грамма глобулина, тогда нормальное соотношение А/Г будет равно 1,4.
При многих инфекциях этот показатель снижается. Теперь мы знаем, что это происходит потому, что возрастает количество гамма-глобулинов. Если в 100 миллилитрах плазмы содержится 3 грамма глобулина, то соотношение А/Г становится равным 1,17.
В эпоху зарождения методов фракционирования белков плазмы ученые надеялись, что соотношение А/Г поможет ставить диагноз. К сожалению, уровень глобулина поднимается в результате стольких причин (а уровень альбумина может снижаться, что также изменит соотношение А/Г), что показатель А/Г не оказался сколько-нибудь полезным для диагностики.
Позже, когда электрофорез стал привычным делом, у ученых вновь появилась надежда. Возможно, точный способ, которым плазма заменяется на альбумин и разные виды глобулинов, будет отличаться у здоровых и больных людей. Возможно, у каждой болезни будет своя «электрофоретическая картина». Другими словами, кровь в таком случае можно будет рассматривать как своего рода «отпечаток пальца» для определения состояния здоровья.
Но и эта надежда также не оправдалась. При некоторых условиях изменения могут быть заметны (обычно происходит увеличение количества гамма-глобулинов), но в целом даже при болезни кровь сохраняет свои обычные свойства.
Но вернемся к гамма-глобулинам.
Еще одним указанием на важность этой части плазменных белков является история отдельных детей (по странному стечению обстоятельств все они мужского пола), которые с самого рождения не в состоянии вырабатывать гамма-глобулин. Такие дети часто страдают от бактериальных инфекций и без лечения могут умереть в раннем возрасте. В эпоху антибиотиков шанс выжить возрастает, но лекарства должны быть все время под рукой.
Очевидно, что гамма-глобулины имеют отношение к защите организма от инфекций. В их состав входят белковые молекулы, так называемые антитела, поэтому наступило время поподробнее рассмотреть взаимоотношения антител и инфекций.
Жизнь — это безжалостная борьба. Животные поедают друг друга, или их жертвой становятся беззащитные растения. Но зеленые растения, сами вырабатывающие для себя пищу и не нападающие на своих собратьев, тоже далеко не так безобидны. Они с ожесточением борются за солнце и воду. Одуванчик не питается травой, но все равно губит ее.
Любое живое существо или растение, которому удалось избежать голодных врагов и дожить до естественной смерти, вызванной физическими или химическими нарушениями в работе организма, затем поглощается падальщиками и бактериями.
Микроорганизмы — самые прожорливые живые существа в мире, и тот, кому посчастливилось избежать хищников, не сумеет избежать их. Для того чтобы питаться, им необязательно нужен мертвый организм. Бактерии живут в наших тканях, за чужой счет обеспечивая себе существование. В наших клетках живут вирусы. Существование одного организма за счет другого живого организма называется паразитизмом.
Нам это явление кажется непристойным, но, очевидно, такой образ жизни очень действенный, поскольку некоторые животные и растения, а не только микроорганизмы выбрали именно его. В какой-то мере мы не должны слишком строго судить их, поскольку тоже паразитируем за счет стад скота и полей зерновых. Несомненно, если бы домашний скот и растения могли думать, они бы тоже сочли людей отвратительными.
Существуют микроорганизмы, жаждущие питаться именно нами, поэтому мы должны как-то от них защищаться. Учитывая, что они окружают нас повсюду, что они множатся с невероятной быстротой и в любое время готовы напасть на нас, можно сказать, что нам крупно не повезло.
Первой линией защиты служит наша кожа. Она довольно непроницаема для бактерий, и мы можем чувствовать себя в безопасности, если кожа не повреждена. Но это не стопроцентная гарантия. Некоторые черви-паразиты приспособились проникать и под здоровую кожу.