Чаще всего от липопротеинов отделяется холестерин, возможно, потому, что он присутствует в крови в довольно большом количестве. После отделения плазма не в состоянии переносить его, и холестерин откладывается на внутренних оболочках кровяных сосудов, где прикрепляется к фосфолипидам. Обычно это происходит в артериях, возможно, из-за того, что в них кровь течет быстрее всего, поэтому и холестерин легко отрывается.
Когда холестерин покрывает внутреннюю поверхность артерий, он сужает их, что ведет к увеличению давления крови на этом участке сосуда. Более того, холестерин вызывает снижение эластичности артериальных стенок — еще одна опасность их разрыва под возросшим давлением. Но и это не все. Внутренняя поверхность артерии становится грубой и неровной, на ней образуются сгустки крови (о них я буду говорить в последней главе), которые могут полностью заблокировать сосуд. Это состояние называется тромбозом.
Если тромбоз происходит в коронарных артериях, питающих сердце, развивается сердечный приступ. Закупорка мелких артерий мозга приводит к голоданию какого-либо участка мозга и вызывает инсульт. В том и другом случае возможен летальный исход.
Отложение холестерина на внутренних стенках артерий называется атеросклерозом. Когда человечество при помощи вакцинации, выработки правил гигиены и антибиотиков победило инфекционные заболевания, атеросклероз стал убийцей номер один для жителей западных стран, преимущественно мужчин.
С атеросклерозом нельзя справиться, когда артерии уже заблокированы, но было бы неплохо заранее знать, кто в большей степени подвержен этой болезни, а кто меньше. Лица, принадлежащие к группе риска, могли бы принять меры предосторожности и прожить дольше. Например, они могли бы раньше снизить интенсивность физической нагрузки.
Поскольку львиную долю холестерина переносят бета-липопротеины, в группу риска могут входить люди, в чьей крови обнаруживается высокое содержание этой группы липопротеинов. Сообщалось, что в крови больных диабетом, которые более других подвержены атеросклерозу, также содержится больше бета-липопротеинов, чем у здоровых людей.
После Второй мировой войны, когда исследования ученых направлены на мирные цели, начался поиск средств, которые позволяли бы более подробно исследовать липопротеины. Были разработаны новые методы изучения этой группы соединений.
Обычно молекулы белков, хотя они и плотнее воды, не оседают в ней, как частицы песка. Сила притяжения заставляет их опуститься вниз, но, оседая, они сталкиваются с молекулами воды и белков, поэтому находятся во взвешенном состоянии. Частицы песка также сталкиваются с молекулами воды, но они настолько крупны, что слабые удары молекул не ощущают. Однако столкновения с молекулами воды имеют значение для более мелких молекул белков.
Мы могли бы заставить молекулы белка осесть на дно, если бы замедлили движение молекул воды, но это можно сделать, только охладив раствор, который замерзнет задолго до того, как движение молекул воды существенно замедлится.
Альтернативным решением будет увеличение силы тяжести молекул белка. Мы не в состоянии усилить земное притяжение, но можно создать силу, похожую на нее. Если поместить белковый раствор в маленький контейнер и начать быстро вращать его, центробежная сила будет давить на содержимое в направлении от центра вращения. Чем больше скорость вращения, тем мощнее эта сила.
В 1930-х годах шведский ученый Т. Сведберг создал центрифугу, которая могла вращаться так быстро, что создавала центробежную силу, в сотни тысяч, даже миллионы раз превосходящую силу земного притяжения. Такое устройство получило название ультрацентрифуги. (Слово «центрифуга» произошло от латинского «бегство от центра».)
В ультрацентрифуге молекулы белка, «пробираясь» сквозь молекулы, движутся от центра вращения. Происходит их оседание, или седиментация.
Скорость седиментации отдельной белковой молекулы зависит от ее размера и формы. Изучение поведения белка при ультрацентрифугировании легло в основу метода определения размера белковой молекулы.
Скорость седиментации измеряется в единицах Сведберга, названных так в честь изобретателя ультрацентрифуги, которые обычно обозначаются S20. Число 20 означает, что температура раствора в центрифуге составляет 20 °C.
В ультрацентрифуге липопротеины ведут себя точно так же, как и обычные белки, за одним важным исключением. Обычно плотность липидов составляет от 75 до 80 % от плотности воды. Низкая плотность липидов в составе липопротеинов с избытком компенсирует повышенную плотность белков. Поэтому липопротеины легче воды, и чем больше в них липидов, тем меньше их удельная масса.
Под воздействием ультрацентробежной силы липопротеины движутся не от центра, а к центру вращения. Скорость их всплытия измеряется в отрицательных единицах Сведберга, или в единицах флотации Sf.
Плазменные липопротеины в зависимости от скорости всплытия при ультрацентрифугировании были разделены на фракции. Фракция липопротеинов, всплывающих медленнее всего (Sf 3–8), может различаться у разных людей, но у одного и того же человека она постоянная. На количество липопротеинов в этой фракции не влияет ни характер питания, ни состояние здоровья.
Самого пристального внимания заслуживает фракция Sf 12–20. Именно ее связывают с возникновением атеросклероза. Если доля липопротеинов в этой фракции у человека высока, увеличивается риск его заболевания атеросклерозом.
Возникает вопрос: можно ли снизить количество липопротеинов Sf 12–20? Существует ли какая-то особая диета? Кажется, что мы не должны употреблять холестерин вовсе, потому что именно в этой фракции холестерина содержится особенно много и именно он причиняет наибольший вред внутренней оболочке артерий. Но к сожалению, организм может легко сам вырабатывать холестерин, и даже при низкохолестериновой диете, когда из нее исключаются масло, яйца и животный жир, уровень липопротеинов фракции Sf 12–20 может сохраняться высоким.
Пока решение проблемы не найдено. Ученые интенсивно работают в этом направлении, поэтому посмотрим, что произойдет в течение нескольких следующих лет.
Глава 13
Отражение внешней опасности
Можно заставить белковые молекулы осесть в растворе и не прибегая к помощи центральной силы, о чем говорилось в предыдущей главе. Такой же результат достигается, если сделать их менее растворимыми в воде. Если вода по какой-то причине не может удерживать молекулы белка на расстоянии друг от друга, они собьются в кучу и осядут в виде мелких кристаллов, или волокнистых комочков, или желатиновой массы, в зависимости от вида белка.
Одним из способов разделения молекул белков является изменение свойств воды, в которой они растворены. Можно вскипятить воду, однако нагревание разрушит белки. Можно растворить в воде новое вещество. Молекулы воды окружат ионы или молекулы этого вещества, и тогда молекулы белка получат относительную свободу.
Для этой цели используют проверенное временем вещество — сульфат аммония, который является примером соли, хорошо растворимой в воде. Соль — это любое вещество, которое в растворе разделяется на ионы и образуется при взаимодействии щелочи и кислоты. Примером может служить обычная поваренная соль, которая и дала всей группе это название. В 100 граммах воды при комнатной температуре растворяется около 80 граммов сульфата аммония.
Сульфат аммония порциями добавляется к белковому раствору. Вероятно, что после каждого добавления будет происходить медленное осаждение белков. Если в растворе находится несколько видов протеинов, то вполне вероятно, что один из них может оказаться более растворимым, чем другой. Менее растворимая разновидность будет осаждаться при добавлении относительно малого количества сульфата аммония, которого недостаточно, чтобы вызвать осаждение более растворимых белков.