Мыльные пузыри - i_048.jpg

Рис. 47.

С помощью рисунка невозможно дать представление о дивном совершенстве ее формы, но, к счастью, этот опыт относится к числу тех, которые очень легко может произвести каждый.

Стоит упомянуть о любопытном соотношении между винтовой поверхностью и поверхностью катеноида вращения (рис. 47 и 24). И та и другая представляют собой поверхности без кривизны, а потому их можно получить при помощи мыльных пленок. Вам известно, что плоский кусок бумаги можно сгибать, но нельзя растягивать, а потому листу бумаги можно придать форму цилиндра или конуса, причем ни одна часть его не будет растянута. Но его нельзя согнуть так, чтобы получился шар или часть шаровой поверхности, так как при этом средняя часть листа должна была бы растянуться или внешние части сжаться, чему бумага противодействует. Возьмем теперь сделанную из дерева или гипса модель катеноида и будем прикладывать к ее поверхности целый ряд смазанных клейстером полосок тонкой бумаги таким образом, чтобы они перекрещивались и находили одна на другую своими краями. У нас получится катеноид из бумаги, на котором мы обнаружим интересное соотношение. Когда клейстер высохнет, разрежем бумагу ножом вдоль какой- нибудь радиальной плоскости, чтобы можно было снять бумагу с модели. Затем, держа бумагу за два разрезанных конца в месте перехвата, станем ее разводить, закручивая в го же время в разные стороны. Тогда перехват распрямится и станет плоским, а остальная часть бумаги изогнется без какого бы то ни было растягивания в правильную двухлопастную винтовую поверхность.

С помощью проволочных фигур, которым придана форма правильных геометрических тел, можно получить очень красивые образования из мыльных пленок, погружая эти рамки в мыльную воду. В случае трехгранной призмы все эти поверхности плоски, и всегда в одном ребре встречаются лишь три такие плоскости, притом под равными углами (рис. 48).

Мыльные пузыри - i_049.jpg

Рис. 48.

Это и не удивительно, если принять во внимание, что сама проволочная фигура трехсторонняя. Рассматривая эту трехстороннюю фигуру с тремя пленками, встречающимися на центральной линии, вы склонны ожидать, что в случае четырехсторонней или квадратной призмы мы увидим четыре пленки, встречающие одна другую на средней линии. Замечательно, однако, что этого никогда не происходит, какую бы неправильную форму ни имела рамка и какое бы сложное строение ни имел клочок пены. На одном ребре никогда не может встретиться более трех плоскостей, а в одной точке — четырех ребер и шести плоскостей. Кроме того, пленки и ребра должны пересекать друг друга лишь под равными углами. Если случайно на один момент в одном ребре встретятся четыре плоскости или если углы не будут в точности равны друг другу, тогда получится во всяком случае неустойчивая форма; она не может оставаться в покое, и пленки будут все время скользить одна вдоль другой, пока они не придут в положение, при котором условия устойчивости будут выполнены В результате кубическая форма дает фигуру, изображенную на рис. 49, в которой центральный квадрат должен быть параллельным одной из шести граней куба и двенадцать других пленок встречаются одна с другой так, что выполняется основное правило, а именно: все углы равны 120°.

Мыльные пузыри - i_050.jpg

Рис. 49.

Это основное правило можно иллюстрировать очень простым опытом, который каждый из вас может легко воспроизвести дома и который вы можете видеть теперь на экране. При помощи двух кусков оконного стекла, помещенных, приблизительно, на расстоянии сантиметра один от другого, устроено нечто вроде плоского стеклянного ящика, куда налито некоторое количество мыльной воды. Если теперь дуть через трубку, погруженную в воду, между пластинками образуется большое количество пузырей. Если пузыри достаточно велики, чтобы достать от одной стенки до другой, вы сразу увидите, что тут нигде не встречается больше трех пленок вместе и что все углы, под которыми пересекаются пластинки и ребра, равны между собой. Кривизна пузырей мешает видеть, что все углы действительно равны друг другу, но, если вы, чтобы избежать обманчивого влияния кривизны, рассмотрите небольшой участок пленок как раз там, где они встречаются, вы увидите, что сказанное мной верно. Вы увидите также, если только достаточно наблюдательны, что, когда выдуваются пузыри, порой на один момент встречаются вместе четыре пленки, но тогда они сразу начинают скользить одна вдоль другой и успокаиваются, когда приходят лишь в единственно возможное для них положение равновесия.

Мыльные пузыри и эфир

Воздух внутри пузыря находится под давлением, производимым вследствие упругости и кривизны пленки пузыря. Если бы дать возможность воздуху проходить через стенку пузыря, то пузырь, конечно, скоро лопнул бы, как это и происходило, когда мы привешивали к пузырю кольцо и перепонку внутри кольца разрывали. Но в пузыре ведь нет отверстий, а потому вы можете ожидать, что газ, подобно воздуху, не будет проходить через стенки пузыря. Тем не менее в действительности газы могут медленно проникать через стенки пузыря, а если производить опыт с некоторыми парами, то проникают они гораздо быстрее, чем мы могли бы предположить.

Эфир образует очень тяжелый и легко воспламеняющийся пар. Этот пар может почти мгновенно проходить сквозь стенки пузыря. Правда, это выражение не вполне точно: в действительности пар сгущается на наружной стороне оболочки и снова испаряется на внутренней ее стороне. На пропускную бумагу, брошенную на дно стеклянного колокола, я наливаю немного эфира, и колокол вскоре заполняется тяжелым паром эфира. Вы можете убедиться, что в колоколе что-то есть, но не простым глазом, так как колокол кажется пустым, а при рассматривании его тени на экране. Я осторожно наклоняю сосуд, и вы видите, как что-то выливается из него. Это и есть пар эфира. Нетрудно убедиться, что он тяжел; достаточно выдуть пузырь и сбросить его в колокол: как только пузырь коснется пара, он перестанет падать и будет плавать по поверхности, подобно пробке на поверхности воды (рис. 50).

Мыльные пузыри - i_051.jpg

Рис. 50.

Теперь исследуем пузырь и посмотрим, не проник ли пар внутрь пузыря. Я вынимаю его из колокола при помощи проволочного кольца и подношу его к огню: пузырь тотчас же вспыхивает. Этого, однако, недостаточно для доказательства того, что пар проник внутрь пузыря, потому что он мог сгуститься в достаточном количестве на поверхности пузыря и сделать его воспламеняемым. Вы припоминаете (см. стр. 24), что, когда я наливал пар эфира на поверхность воды, он сгущался на ней и в такой степени ослаблял силу поверхностного натяжения, что позволял проволочной сетке легко проходить через верхний слой воды. Чтобы проверить правильность первоначального объяснения, поступим иначе. Я выдуваю пузырь с помощью воронки и на короткое время опускаю его в пар эфира. Вынимаем пузырь из сосуда, и вы замечаете, что он висит подобно тяжелой капле; он утратил свою прежнюю правильную шарообразную форму, и кажется, что пар нашел себе путь внутрь пузыря. Удостовериться в этом мы можем, поднеся огонь к узкому концу воронки: пар вспыхивает и, выталкиваемый упругостью стенок пузыря, горит языком в двенадцать или пятнадцать сантиметров длиной (рис. 51).

Мыльные пузыри - i_052.jpg

Рис. 51.

Вы могли также подметить, что, когда я вынул пузырь, пар стал выходить из пузыря наружу и падать тяжелым потоком. Конечно, это можно заметить, только рассматривая тень пузыря на экране.