Возможности для экспериментальной работы, так же как прилив новых кадров и лучшее финансирование, — несомненное благо. Но любая медаль имеет оборотную сторону. Так и здесь. В радиобиологию валом повалил народ, от которого нельзя было ожидать больших успехов.

Что их привлекало? Одних лучшие условия, других легкость получить работу, третьих — мода, четвертых — молодость науки, где еще много «неподнятой целины», пятых — возможность быстро сделать и защитить диссертацию и т. д. и т. п… А кое-кто и независимо от своей воли стал радиобиологом. Например, лаборатория, раньше занимавшаяся другими вопросами, получала новое задание. Или такой специалист, как военный врач, который не вполне волен распоряжаться своей судьбой, переводится на другое место работы.

Это вчерашний день радиобиологии, конец 40-х — начало 50-х годов.

Хотя вчерашний день сливается с сегодняшним и трудно провести между ними границу, но сейчас уже можно посмотреть назад. То, что было, — и хорошее и плохое — закономерно. Как и в любой другой модной области, проведено много опытов, опубликовано слишком много статей, в которые попало много шелухи. Но получено огромное количество фактов и цифр, которые до сих пор еще до конца не осмыслены и не обобщены.

Из-за спешки некогда было следить за работами коллег, сравнивать свои результаты и соображения с чужими. Одни двигались в одном направлении, другие в другом. А сейчас, встречаясь, зачастую не могут понять друг друга. Стали говорить на разных языках. Можно сказать, что это очень плохо. Исчезла единая радиобиология, которая существовала в середине 40-х годов. Но это и хорошо. Ведь когда мы снова найдем общий язык и приведем работы всех школ «к общему знаменателю», насколько более зрелой и многогранной станет наша наука!

Произошел отбор. Время воспитало большую группу специалистов-радиобиологов, которые знают свою науку, любят ее и собираются посвятить ей жизнь. Именно на их долю после периода «снимания пенок» выпадает тяжелая, но благодарная работа: заполнять «белые пятна» и искать «общий знаменатель», обобщать то, что сделано, поднимать науку на новый уровень, внедрять ее результаты в практику.

А любители «пенок» ушли в другие, более новые и более модные области, вроде молекулярной биологии, бионики, кибернетики, на которые теперь уже радиобиологи могут смотреть с завистью. Сделал человек кандидатскую диссертацию по радиобиологии, теперь пишет докторскую по молекулярной генетике. А через три года войдет в моду новая область, он перейдет в нее в надежде стать лауреатом или членом-корреспондентом. Что ж, и это тоже хорошо… для тех наук, из которых он ушел.

Невидимый современник - i_019.png

Глава III

Стрельба по мишеням

Невидимый современник - i_020.png

Коль скоро недочет в понятиях случится,

Их можно словом заменить.

Гёте, «Фауст»
Чудеса в решете

— Пшеница превращается в рожь!

— Береза в осину!

— Пеночка в кукушку!

— Вирусы — стадия развития бактерий!

— Клетки возникают из неклеточного живого вещества!

И так далее…

Увы, не в средние века, а в середине нашего века люди с научными дипломами выступали с подобными утверждениями. «Мода» была такая. Во всех областях биологии находились этакие доморощенные колумбы. Были они и в радиобиологии.

Например, один… действительный член двух академий выступил с сенсационным открытием, что растения способны разделять изотопы. Шутка ли! Ученые ломают головы, тратят миллионы для создания установок, разделяющих изотопы, а растения — пожалуйста! Причем речь шла не о тяжелой воде; атомы водорода как-никак, несмотря на те же химические свойства, вдвое тяжелее обычных. Нет, любые изотопы растения разделяют, и дело именно в том, что они предпочитают радиоактивные атомы тех же элементов обычным. Потому что те же результаты получались с радиоактивными изотопами разных элементов.

Приводилось описание опытов, цифры, фотографии… Чего уж больше? Почему я говорю об этих работах столь иронически? Ведь я не ставил опытов, чтобы проверить результаты. И никто не ставил специально таких опытов. Вы меня можете упрекнуть в консерватизме и даже кое в чем похуже. Разве можно, не имея в руках новых и более точных фактов, возражать против чьих-то результатов?!

Но здесь случай, прямо скажем, своеобразный. В самом деле, о чем идет речь? Растения умеют отличать радиоактивные изотопы от нерадиоактивных. А что такое радиоактивный атом? Это атом, который когда-то, один-единственный раз в своей жизни, выбросит радиоактивную частицу и… умрет, превратившись в другой атом. Вот, к примеру, радиоактивный фосфор. Атом как атом, только процента на три потяжелее обычного. Но из него вылетает электрон (бета-частица), и атом радиоактивного фосфора превращается в атом обыкновенной серы.

Что же означает приведенное выше утверждение? Ни больше, ни меньше как то, что растение знает, что данный атом распадется в будущем! Ведь именно это и определяет его радиоактивные свойства. Согласитесь, что утверждение относится к категории таких, которые не подлежат серьезному научному обсуждению.

Однако мало ли что? Может, дело не в этом, а в чем-нибудь другом, и стоит все-таки проверить. Вдруг здесь кроется великое открытие!

Не нужно проверять. Надобности нет потому, что хотя никто не проверял специально этих результатов, но тем не менее это сделано независимо в тысячах опытов. Давным-давно существует метод меченых атомов, основанный на том, что радиоактивные и нерадиоактивные атомы одного и того же элемента ведут себя совершенно одинаково (некоторое исключение составляет водород). И конечно, прежде чем метод вошел в практику, он был проверен в точнейших опытах. А каждый новый опыт приносит дополнительное подтверждение.

Так в чем же дело? — спросите вы. — Как появились такие статьи? Тут, уж увольте, следствия вести не собираюсь. Но ясно одно: утверждение не соответствует истине, так же как и приводимые результаты.

А бывает и иначе. В опытах все чисто, и результат вполне естественный, а считаться с ним нельзя. Странно? Но это азбука экспериментальной науки.

В конце 40-х годов радиобиологи открыли, что некоторые вещества, если их дать животным перед облучением смертельными дозами, снижают процент гибели. При введении после облучения эти вещества оказывались неэффективными. Но вот один французский ученый (довольно известный) опубликовал статью, в которой утверждал, что введение после облучения кроликам раствора цистеина и аскорбиновой кислоты снижает их смертность вдвое!

Я в то время начинал свой путь в науке и как раз занимался противолучевыми веществами. Ясное дело, нужно проверить. Беру белых мышей. Облучаю их, ввожу «французскую смесь» в том же количестве на единицу веса животного и жду… Ждать приходится недолго. Часть животных гибнет от «смеси» (концентрации обоих веществ в ней высоки), остальные мрут от лучевой болезни, но раньше, чем контрольные, которым ничего не вводилось.

Что-то не так! Повторяю опыт, меняю дозировку веществ, но в лучшем случае «французская смесь» не влияет на смертность. Может быть, мыши — исключение? Облучаю крыс — тот же результат, что и с мышами. Очевидно, нужно работать на кроликах, думаю я. Но кроликов в лаборатории нет, и я не ставлю дальнейших опытов. Подожду следующих статей. Конечно, многие должны обратить внимание на французскую работу и повторить опыты.

Невидимый современник - i_021.png

Однако время идет, а статей не появляется. Только через несколько лет вышел большой обзор работ по противолучевым веществам, написанный американцем Гарвеем Паттом. В этом обзоре я нашел ссылку и на французскую статью, доставившую мне столько хлопот. А после упоминания этой работы Патт пишет: «Я проверил это утверждение в опытах на большом числе крыс и кроликов и получил только отрицательные результаты». Теперь понятно, почему не было специальных публикаций о «французской смеси».