Формирование магнитного состояния ферромагнитных материалов, из которых строят корабли, начинается при их охлаждении ниже точки Кюри (температура, выше которой ферромагнитные материалы превращаются в парамагнитные и наоборот) после проката или отжига. Дальнейшее магнитное состояние зависит от строительства на стапеле под влиянием различных внешних воздействий, главными из которых являются упругие напряжения, возникающие в геомагнитном поле. Под влиянием этих факторов происходит намагничивание ферромагнитных масс кораблей по безгистерезисной кривой[66] в соответствии с курсом корабля и составляющими земного магнитного поля для заданной геомагнитной широты. Дальнейшие изменения магнитного состояния ферромагнитных масс кораблей происходят в сложных условиях плавания под влиянием упругих напряжений, возникающих в штормовых условиях или при глубоководных погружениях (подводные лодки), при различных значениях составляющих геомагнитного поля.

На основании проведенных в Казани исследований были определены оптимальные условия безобмоточного размагничивания образцов простейших моделей, позволяющие получить наиболее стабильное их магнитное состояние, и разработана соответствующая инструкция для размагничивания кораблей. Необходимо отметить высокую оперативность работы для того времени: инструкция была выпущена в Казани 15 мая, а с 22 августа эта методика начала широко применяться, в частности у нас на ЧФ. Инструкцией предусматривалось предварительное вертикальное намагничивание корпусов кораблей в направлении, противоположном исходному, — «глубокое опрокидывание» поля, чтобы достигнуть значений магнитного поля под кораблем (обратного знака по сравнению с исходным), превышающих исходное на 150–200 %. Последующей операцией предусматривалась компенсация «опрокинутого» поля до минимальных значений, предусмотренных нормами.

Инструкция по применению новой методики была разослана УК ВМФ на все флоты и флотилии и внедрена на всех СВР. Опыт дальнейшей работы на флотах и анализ, проведенный в НИИ, показали, что этим способом удается получить более стабильное магнитное поле кораблей, чем ранее. Он широко применялся на флотах в течение всей войны.

Для полноты картины следует отметить, что АН СССР и ее институты в годы войны занимались совершенствованием не только системы защиты кораблей, но и систем обнаружения ферромагнитных и металлических предметов, контрольно-измерительных магнитных станций, электромагнитных и других тралов и т. д. Так, еще в сентябре 1941 г. вице-президент АН СССР академик О. Ю. Шмидт сообщил начальнику УК ВМФ инженер-контр-адмиралу Н. В. Исаченкову, что в Институте теоретической геофизики профессором А. Г. Калашниковым разработан прибор для обнаружения железных масс под водой. Позднее были проведены его испытания и установлено, что прибор удовлетворяет техническому заданию[67].

Кроме того, в лаборатории ЛФТИ проводились все-сторонние теоретические исследования проблемы размагничивания. А. П. Александров привлек к участию в них И. В. Курчатова, И. Е. Тамма, Е. И. Кондорского и других ученых. На основании результатов этих исследований в 1942 г. А. П. Александровым были составлены два тома рукописных конспектов по размагничиванию кораблей. Вот далеко не полный перечень вопросов, рассмотренных в них: магнитный поток поля корабля через горизонтальную плоскость; поле элементарного диполя; поле намагниченного эллипсоида; теория флюксметра[68]; магнитное поле простейших контуров тока; расчет экранирующего действия железа на магнитное поле тока; о возможности полного размагничивания; составляющие магнитного ноля корабля и способы их компенсации; безобмоточное размагничивание кораблей и устранение постоянного продольного-и поперечного намагничиваний; расчет размагничивающих устройств; устройство немецких магнитных мин и их траление; английский электромагнитный разомкнутый трал и т. д.

Даже простое перечисление свидетельствует о глубине теоретических разработок, их значении для понимания возникновения магнитного поля корабля, его изменений под влиянием различных внутренних и внешних факторов и уменьшения до величин, обеспечивающих безопасное плавание кораблей. К сожалению, конспекты были отпечатаны небольшим тиражом и отправлены лишь в УК ВМФ и НТК ВМФ, а на флоты, где они были особенно нужны, не попали. В утешение можно сказать, что на основе этих конспектов было разработано «Руководство по размагничиванию кораблей», размноженное в 1944 г. (РРК-44). Следует отметить, что в то время уже имелся опыт освещения новой техники: в 1942 г. вышла монография О. Б. Брона «Немецкие неконтактные мины и способы борьбы с ними», оказавшая большую пользу при подготовке специалистов минеров и размагнитчиков.

Большую научную и практическую помощь оказывала лаборатория А. П. Александрова минерам флотов. Так, ею был выполнен расчет магнитного поля хвостового магнитного трала и определены оптимальные параметры его использования в различных условиях. Благодаря этому эффективность траления немецких магнитных мин на Волге — основном пути поставки нефти в центр страны — существенно повысилась[69].

16 апреля 1943 г. состоялось заседание Военно-морской комиссии при президиуме АН СССР под председательством А. Ф. Иоффе[70], на котором был заслушан доклад А. П. Александрова о состоянии работ по размагничиванию кораблей. В целях дальнейшего усовершенствования зашиты кораблей от магнитного минного оружия комиссия рекомендовала при проектировании новых кораблей предусматривать установку новой, «распределенной» системы защиты от магнитных мин; оборудовать в ближайшее время один из вновь строящихся кораблей «распределенной» системой обмоток размагничивающего устройства и провести ее испытания; для улучшения защиты подводных лодок от магнитных мин устанавливать на них курсовые обмотки.

Электромагнитная девиация магнитных компасов на кораблях. Магнитная девиация компасов на самолетах-торпедоносцах. Компенсационные устройства

Во время плавания кораблей, оборудованных размагничивающими устройствами, было установлено, что в момент включения и выключения основной обмотки размагничивающего устройства на некоторых кораблях резко изменяются показания магнитных компасов. Еще хуже обстояло дело на кораблях с курсовыми обмотками. Там показания магнитных компасов изменялись еще и при изменении силы тока в обмотках. Хотя магнитные компасы на кораблях являются резервным техническим средством кораблевождения, опыт войны показал, что в условиях боевых действий гирокомпасы могут быть повреждены и поэтому важно обеспечить надежную работу магнитных компасов.

Это вынудило нас с М. А. Оболенским вторгнуться в «чужое» ведомство: гидрографов и штурманов — и заняться разработкой для девиации компасов трехобмоточных магнитных компенсаторов и регулирующих устройств к компенсаторам на один, два и три компаса. Были изготовлены, установлены, испытаны и сданы в эксплуатацию компенсационные устройства к магнитным компасам на эскадренных миноносцах «Незаможник», «Беспощадный», «Бойкий» и БТЩ «Груз». На этих кораблях установили компенсационные устройства с одной катушкой (на малых кораблях устанавливали однокатушечные компенсаторы, а на больших — трехкатушечные). Трехкатушечные компенсаторы по нашим чертежам изготавливали мастерские № 1 и 4 Технического отдела ЧФ. Для монтажа компенсационных устройств к компасам на кораблях в мастерских были выделены две бригады[71].

По результатам испытаний и опыта эксплуатации компенсаторов на кораблях была установлена их надежная работа. 24 марта 1943 г. подробный отчет Отделения размагничивания кораблей об этом был отправлен заинтересованным организациям[72]. 5 августа мы получили заключение Гидрографического управления ВМФ, в котором работе давалась высокая оценка. Полученные результаты были положены в основу указаний гидрографическим отделам флотов[73].