Среди них была 25-летняя женщина, Розанда Дангубич. Осенью 1960 года она вышла замуж. 1 марта 1965 года у Розанды родилась дочь.

Невольный эксперимент продолжается. Наблюдение за бывшими сфинксами очень важно. Столь же важно наблюдение и за дочерью Розанды Дангубич.

1958 год был годом успеха и поисков в этом направлении. Начало часто бывает успешным, закрепить успех труднее. В этом же году произошел и другой случай.

У 20-летнего Джона Ритериса недостаточность обеих почек. Джон умирает. Но у него брат-близнец Эндрю. Близнец-то близнец, да разнояйцевый. Все равно что не близнец. И тем не менее брат дает почку.

Группа врачей бостонского госпиталя, хирург, радиолог, уролог и терапевт решают рискнуть почкой брата.

Джона подвергают облучению, сводят к минимуму сопротивляемость и пересаживают почку.

Оба живут, но Джона лечат от лучевой болезни и защищают от возможных инфекций.

Проходит восемь месяцев, и восстанавливается иммунитет. Почка под угрозой.

Новое массивное облучение. Но оно уже не помогает. Почка Эндрю вошла в неразрешимое противоречие с иммунитетом Джона.

Биологические ясли

Этот раздел еще об одном новом понятии — о тканевых и клеточных культурах.

Некоторые клетки можно поместить в пробирку со специальной питательной средой, и эти клетки будут жить и размножаться, причем размножаться бесконечно. Их нужно только пересаживать из пробирки в пробирку. Чтобы получить много клеток, их «засевают» из пробирки в особый плоский флакон, называемый матрасом. С таких матрасов можно получить «урожай» в миллиарды клеток.

Становится возможным изучать закономерности жизни изолированных человеческих клеток и клеток животных, действие на них различных лекарств, изучать особенности обмена веществ и прочие не менее важные вещи.

Если клеточные культуры заразить вирусами, то они размножаются в этих клетках, как в живом организме. Можно изучать закономерности их размножения. Можно получать вирусную массу для вакцин. Можно искать химические агенты для лечения вирусных болезней (грипп, корь, полиомиелит и др.).

Именно так вирусологи и поступают. Все это они делают в пробирках и матрасах — иначе говоря, в стеклянных условиях, в стеклянном мире. Эта жизнь, этот эксперимент переводятся на латынь и получают самостоятельный смысл и имя in vitro (ин витро), то есть в стекле.

In vitro размножается культура человеческих или животных клеток. Размножается бесконечно. Как бы автономный кусочек человеческого тела или тела животного.

Многие клетки могут автономно жить и размножаться. Например, клетки соединительной ткани — фибробласты, некоторые эпителиальные клетки, покрывающие слизистые оболочки, и раковые.

Сфинксы XX века - img28

Доктор и колыбели

К сожалению, далеко не все клетки могут долго жить и размножаться в пробирках (in vitro). Многие ткани очень быстро отмирают. К ним относятся и интересующие нас клетки кроветворных тканей — костного мозга, селезенки. Эти клетки создают кровь и, что особенно важно нам, иммунологам, антитела.

Возможность изучения этих тканей важна, но мала. Жизнь кроветворных тканей, в том числе «антителотворных» клеток, in vitro оказалась неполноценной. Иммунологам давно нужны какие-то другие методы.

Их надо было искать. Необходимо было создать более совершенные, более деликатные «биологические ясли» для столь деликатных, столь совершенных клеток. К сожалению, нельзя изучать эти клетки во всех аспектах в самом организме непосредственно, там, где они живут обычно. Нельзя, например, решить вопрос о возможности превращения клеток одного типа в другой. Это можно исследовать только на изолированных в чистом виде клетках. К тому же нужны условия, в которых за ними можно следить.

Нельзя окончательно выяснить характер действия на клетки химических или физических агентов. Для этого нужно направить интересующие нас воздействия непосредственно на эти клетки. Воздействия в целостном организме всегда сложно зависят и от многих других его систем (нервная, гормональная и т.п.). Нужны изолированные клетки, изолированные воздействия на них.

В отношении кроветворной ткани получается своеобразная ситуация. Ее легко взять у исследуемого организма. Легко получить клеточную взвесь. Можно подвергать эту взвесь всевозможным воздействиям. И невозможно потом культивировать. В пробирках она не культивируется. Вот почему уже в конце прошлого столетия пытались культивировать клетки, изъятые из одного организма, в организме другого животного, не в пробирке, а in vivo (ин виво), что в переводе с латинского значит «в живом».

Эти попытки длительное время не приносили желаемого результата, несмотря на то, что клетки помещались не в искусственную среду, а как бы в естественные условия.

Неудачи культивирования in vivo объяснялись двумя основными причинами. Во-первых, мешает иммунитет, чужеродные клетки — пересаженные реципиенту клетки отторгаются в течение нескольких ближайших дней. Во-вторых, клетки, введенные в целостный организм, «смешиваются» с клетками нового хозяина, и следить за ними практически невозможно. Необходимо придать им какую-то специфическую функцию, которой не обладают клетки реципиента и по которой можно следить за их жизнедеятельностью.

Культура клеток in vivo стала широко и продуктивно применяться только в последние годы, после преодоления указанных трудностей. Первое препятствие было устранено посредством использования изологичных животных (еще один термин, означающий, что доноры и реципиенты принадлежат к одной чистой линии), внутри которых трансплантации происходят без осложнений. Ну, а специфическая функция — естественно, выработка специфических антител. Для этого доноры перед изъятием у них клеток кроветворных тканей (костномозговых, селезеночных, лимфоидных) подвергаются иммунизации. В результате этого специализированные клетки обретают способность вырабатывать заданные антитела. Клетки получают функциональную метку, и за ними становится возможным следить.

Кроме того, реципиентов можно облучить, и они не смогут вырабатывать свои антитела. После этого мероприятия продукция антител в культуре in vivo ведется именно перенесенными клетками. Облученные изологические реципиенты служат в качестве «пробирок», в которые «инокулируются», то есть вводятся, исследуемые клетки селезенки, лимфатических узлов или костного мозга.

Таким образом, метод культивирования кроветворных иммуннокомпетентных клеток in vivo в современном виде включает следующие этапы: 1) иммунизация донора, чтобы извлекаемые клетки обладали функцией выработки антител; 2) извлечение исследуемых клеток и осуществление требующихся по задачам исследований манипуляций или воздействий; 3) введение их в организм облученного изологического реципиента; 4) учет их функционирования в культуре in vivo посредством определения уровня антител, вырабатываемых перенесенными клетками, и с помощью непосредственных микроскопических наблюдений.

По характеру третьего этапа культура in vivo может быть разделена на «свободную», когда клетки вводятся непосредственно в кровь реципиента, расселяясь по всему организму, и «камерную», когда клетки помещаются в камеры, проницаемые для жидкостей, но не для клеток. В последнем случае клетки в культуре in vivo размножаются, функционируют и дифференцируются в ограниченной полости, что дает большие возможности для микроскопических наблюдений за ними.

Вот несколько примеров, чего ученые достигли с применением культуры in vivo в области иммунологии и радиобиологии.

Иммунология обогатилась рядом капитальных закономерностей. Прежде всего доказано, что выработка антител является функцией количества клеток. Увеличение вдвое числа клеток в культуре in vivo во столько же раз увеличивает выработку антител.