Эффективное значение напряжения и тока. Амплитуда говорит о наибольшей работе, которую может выполнить переменный ток. Но ведь амплитудные значения бывают редко. Чтобы судить о работоспособности тока не в один какой-нибудь момент, а в течение длительного времени, вводится еще одна характеристика — эффективное значение тока. Оно указывает, какой величины нужно пустить в цепь постоянный ток, чтобы он работал так же, как и протекающий там переменный. Эффективное значение, как правило, меньше амплитуды, а вот на сколько меньше, это зависит уже от формы кривой, точнее, от того, каков переменный ток в интервалах между амплитудами. Для синусоидального переменного тока и напряжения (обратите внимание — только для синусоидального!) эффективный ток (напряжение) составляет 70 % амплитуды, или иначе — амплитуда на 30 % больше эффективного значения. Когда речь идет об электрических приборах или сети переменного напряжения, то приводят только эффективные токи и напряжения. Иными словами, в сети 220 в амплитуда достигает 310 в; в сети 127 в — около 180 в.

Фаза. Чтобы всякий раз не путаться с тысячными, сотыми или миллионными долями секунды, удобно разбить весь период, независимо от того, сколько он длится, на условные единицы времени — градусы. Весь период делят на 360°. При этом половина периода, естественно, равна 180°, четверть периода — 90° и т. д. Момент времени, соответствующий какому-нибудь определенному мгновенному значению тока (напряжения), называется фазой мгновенного значения. Так, например, на нашем графике А фаза положительной амплитуды — 90°, фаза отрицательной амплитуды — 270°, фазы нулевых значений — 0°, 180° и 360°, фаза помеченного на графике значения I1 составляет 45°. Точно так же можно было бы отметить фазы и любого другого значения тока и напряжения. Ток и напряжение на этом графике изменяются синфазно — положительные и отрицательные амплитуды наступают у них в одни и те же моменты времени. Но так бывает не всегда.

ВОСПОМИНАНИЕ № 12. СДВИГ ФАЗ.

Шаг за шагом. Транзисторы - _105.jpg

Подключим к щей нагрузке два генератора. Их переменные напряжения могут действовать согласованно (в фазе), а могут действовать и не согласованно — со сдвигом фаз. В самом страшном случае генераторы просто работают друг против друга. Положительная амплитуда у одного из них появляется на позже, чем у другого, или, иными словами, напряжения сдвинуты по фазе на 180°. Возможны и другие сдвиги фаз между разными напряжениями, а кроме того, возможен сдвиг между переменным током и создавшим его переменным напряжением.

ВОСПОМИНАНИЕ № 13. КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА.

Чем быстрее меняется напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение хс с ростом частоты. Теперь посмотрите на график синусоидального напряжения: быстрей всего оно меняется, когда проходит через ноль, и именно в эти моменты в конденсаторе наблюдается амплитуда тока. Когда напряжение приближается к своей амплитуде, оно растет все медленнее, наконец как бы замирает на миг и начинает уменьшаться.

Шаг за шагом. Транзисторы - _106.jpg
Шаг за шагом. Транзисторы - _107.jpg

Вот именно во время этого «замирания» ток в цепи становится равным нулю, а затем меняет свое направление. Вывод: положительная амплитуда тока наступает на четверть периода раньше, чем положительная амплитуда напряжения, то есть ток через конденсатор опережает напряжение на нем на 90°.

ВОСПОМИНАНИЕ № 14. СОЕДИНЕНИЕ КОНДЕНСАТОРОВ.

Шаг за шагом. Транзисторы - _108.jpg

При параллельном соединении общая емкость конденсаторов равна сумме емкостей, при последовательном соединении общая емкость меньше наименьшей. Формулы для расчета общей емкости — это те же формулы для подсчета общего сопротивления (Воспоминания №№ 5 и 6), только «перепутанные»: формула для параллельного соединения R похожа на формулу для последовательного соединения С, а формула для последовательного соединения R — на формулу параллельного соединения С.

ВОСПОМИНАНИЕ № 15. КАТУШКА В ЦЕПИ ПЕРЕМЕННОГО ТОКА.

Шаг за шагом. Транзисторы - _109.jpg

Когда изменяется ток в катушке, то изменяется созданное этим током магнитное поле, и в результате электромагнитной индукции (наведения) катушка сама в себе наводит электродвижущую силу. Величина этой э. д. с. самоиндукции зависит от скорости изменения тока (а значит, от его частоты), а также от некоторых свойств самой катушки, которые отображены в ее коэффициенте самоиндукции, или, иначе, индуктивности L. Индуктивность L, в частности, тем больше, чем больше витков. Резко увеличивает L сердечник из стали или другого ферромагнитного материала.

Единица индуктивности — генри (гн). Такой индуктивностью обладает катушка, в которой при изменении тока на 1 а за 1 сек наводится э. д. с. 1 в.

Электродвижущая сила самоиндукции всегда препятствует изменению тока: когда ток нарастает, она мешает ему нарастать, когда ток убывает, э. д. с. самоиндукции, наоборот, поддерживает его, затягивает процесс уменьшения тока. Этим самым катушка оказывает переменному току определенное сопротивление. Это так называемое индуктивное сопротивление xL возрастает с увеличением частоты f (скорости изменения тока) и с ростом самой индуктивности L катушки. Напряжение на катушке и ток через нее также сдвинуты по фазе на 90°, но, в отличие от конденсатора, ток отстает от напряжения.

Индуктивность катушки, правда, очень приближенно можно определить по ее внешнему виду.

ВОСПОМИНАНИЕ № 16. СЛОЖНЫЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА.

Шаг за шагом. Транзисторы - _110.jpg

Когда в общую цепь одновременно включены и активные элементы (например, резисторы), и реактивные (например, конденсаторы), то в цепи могут возникать самые разные сдвиги фаз между общим током и общим напряжением — от 0 до 90°. Так, например, если конденсатор и резистор соединены последовательно, то через них идет один и тот же ток I. При этом напряжение UR на резисторе совпадает по фазе с током, а напряжение на конденсаторе Uс, как обычно, отстает от него на 90°. Общее напряжение U на RС-цепочке отстает от тока тем сильнее, чем больше хс по сравнению с R. А поскольку эти напряжения пропорциональны сопротивлениям хс и R, то можно сказать, что сдвиг фаз определяется соотношением этих сопротивлений.

В отличие от последовательного соединения резисторов, общее сопротивление z определяется не как алгебраическая сумма (z не равно R + xc), а как геометрическая сумма z = √(R2 + x2c). При последовательном соединении R и С влияние конденсатора возрастает с уменьшением частоты f и его емкости.

При параллельном соединении R и С на обоих этих элементах действует общее напряжение U, ток IR совпадает с ним по фазе, ток Ic опережает на 90°. Чем больше ток Ic через конденсатор, тем сильнее результирующий сдвиг фаз между U и I. Иными словами, при параллельном соединении R и С влияние конденсатора тем сильнее, чем больше его емкость и чем выше частота.