Может показаться естественным вывод, что реальность все-таки не показывает настоящей универсальности вычислений, поскольку невозможно полезно передать явления интерференции. Однако, Фейнман сделал противоположный вывод и был совершенно прав! Вместо того, чтобы считать трудность обработки задачи передачи квантовых явлений препятствием, Фейнман счел ее благоприятной возможностью. Если, чтобы узнать исход эксперимента с интерференцией, необходимо выполнить так много вычислений, то сам факт проведения такого эксперимента и измерения его результатов равносилен выполнению сложного вычисления. Таким образом, рассуждал Фейнман, наверное все-таки можно было бы эффективно передать квантовые среды при условии, что компьютеру позволят проводить эксперименты над реальным квантово-механичееким объектом. Компьютер выбрал бы, какие измерения сделать на вспомогательной составляющей квантового аппаратного обеспечения во время проведения эксперимента, и включил бы результаты измерений в свои вычисления.
В действительности вспомогательное квантовое аппаратное обеспечение тоже было бы компьютером. Например, интерферометр мог бы действовать, как подобный прибор, и. как любой другой физический объект, его можно было бы считать компьютером. Сегодня мы назвали бы его специализированным квантовым компьютером. Мы «программируем» его, устанавливая зеркала так, чтобы создать определенную геометрию, и затем направляем один фотон на первое зеркало. В эксперименте с неслучайной интерференцией фотон всегда будет появляться в одном конкретном направлении, определяемом установкой зеркал, и мы можем интерпретировать это направление как указывающее результат вычисления. В более сложном эксперименте с несколькими взаимодействующими частицами такое вычисление запросто могло бы, как я уже объяснил, стать «труднообрабатываемым». Но поскольку мы смогли получить его результаты, просто проведя эксперимент, значит, его все-таки нельзя назвать действительно труднообрабатываемым. Нам теперь следует быть более осторожными в вопросах терминологии. Очевидно, что существуют вычислительные задачи, которые «с трудом поддаются обработке», если мы пытаемся решить их с помощью любого существующего компьютера, но которые перешли бы в разряд легко обрабатываемых, если бы в качестве специализированных компьютеров мы использовали квантово-механические объекты. (Обратите внимание, что возможность использования квантовых явлений для выполнения вычислений с помощью такого метода обусловлена тем, что эти явления не подвержены хаосу. Если бы результат вычислений был функцией, чрезмерно чувствительной к начальному состоянию, «запрограммировать» такое устройство, установив его в подходящее начальное состояние, было бы непосильно сложной задачей).
Использование вспомогательного квантового устройства таким образом можно было бы посчитать надувательством, так как очевидно, что любую среду гораздо проще передать, имея доступ к ее запасной копии для проведения измерений во время передачи! Однако Фейнман выдвинул гипотезу, что нет необходимости в использовании точной копии передаваемой среды: что можно найти вспомогательное устройство с гораздо более простой конструкцией, но интерференционные свойства которого, тем не менее, будут аналогичны свойствам передаваемой среды. Оставшуюся часть передачи способен осуществить обычный компьютер, работающий аналогичным образом между вспомогательным устройством и передаваемой средой. Фейнман ожидал, что эта задача будет легкообрабатываемой. Более того, он предполагал, как оказалось, правильно, что все квантово-механические свойства любой передаваемой среды можно смоделировать с помощью вспомогательных устройств конкретного вида, который он точно определил (а именно, совокупности вращающихся атомов, каждый из которых взаимодействует со своими соседями). Он назвал весь класс таких устройств универсальным квантовым имитатором.
Однако этот имитатор не был отдельной машиной, какой он должен был бы быть, чтобы называться универсальным компьютером. Взаимодействия, которым пришлось бы подвергнуться атомам имитатора, нельзя было установить однажды и навсегда, как в универсальном компьютере, их нужно было переустанавливать для каждой передаваемой среды. Однако смысл универсальности в том, что должно быть возможным запрограммировать отдельную машину, точно определенную раз и навсегда, для выполнения любого возможного вычисления или передачи любой возможной среды. В 1985 году я доказал, что в квантовой физике существует универсальный квантовый компьютер. Это доказательство было абсолютно прямым. Все, что мне пришлось сделать, это скопировать устройства Тьюринга, но для определения лежащей в их основе физики воспользоваться не классической механикой, которую Неявно принимал Тьюринг, а квантовой теорией. Универсальный квантовый компьютер может выполнить любое вычисление, которое может выполнить любой другой квантовый компьютер (или любой компьютер типа машины Тьюринга), а также он может передать любую конечную физически возможную среду в виртуальной реальности. Более того, С тех пор было показано, что время и остальные ресурсы, которые ему понадобятся для осуществления всего этого, не будут увеличиваться экспоненциально с ростом размеров или числа деталей передаваемой среды, так что важные вычисления будут легкообрабатываемы в соответствии с нормами теории сложности.
Классическая теория вычисления, которая в течение полувека оставалась неоспоримым основанием вычисления, сейчас устарела, превратившись разве что, как и остальная классическая физика, в схему аппроксимации. Сейчас такой теорией вычисления является квантовая теория вычисления. Я сказал, что Тьюринг в своем устройстве неявно использовал «классическую механику». Но, оценив прошедшие события, сейчас мы можем увидеть, что даже классическая теория вычисления не полностью соответствовала классической физике и содержала серьезные предзнаменования квантовой теории. Совсем не совпадение, что слово бит, означающее наименьшее возможное количество информации, которым способен управлять компьютер, в сущности значит то же самое, что и квант, дискретный компонент. Дискретные переменные (переменные, которые не могут принимать непрерывный диапазон значений) чужды классической физике. Например, если переменная имеет только два возможных значения, скажем, 0 и 1, как она вообще попадает из 0 в 1? (Я задавал этот вопрос в главе 2). В классической физике ей пришлось бы переместиться из одного значения в другое с перерывом, что несовместимо с работой сил и движений в классической механике. В квантовой физике нет необходимости в прерывном изменении — даже несмотря на то, что все измеримые величины дискретны. Это происходит следующим образом.
Для начала давайте представим несколько параллельных вселенных, сложенных подобно колоде карт, причем вся колода представляет собой совокупность вселенных. (Такая модель, в которой вселенные располагаются последовательно, весьма преуменьшает сложность мультиверса, но она вполне достаточна, чтобы проиллюстрировать то, о чем я говорю). Теперь давайте изменим эту модель, чтобы учесть тот факт, что мультиверс — это не дискретный набор вселенных, а континуум, и то, что не все вселенные различны. В действительности, для каждой вселенной, которая там присутствует, также существует континуум идентичных вселенных, содержащий определенную крошечную, но отличную от нуля долю мультиверса. В нашей модели эту долю можно представить через толщину карты, причем каждая карта теперь представляет все вселенные данного типа. Однако, в отличие от толщины карты, доля каждого типа вселенных изменяется со временем по квантово-механическим законам движения. Следовательно, доля вселенных, обладающих данным свойством, тоже изменяется и изменяется непрерывно. В случае с дискретной переменной, которая изменяется от 0 до 1, допустим, что эта переменная принимает значение 0 во всех вселенных до начала изменения, а после изменения она принимает значение 1 во всех вселенных. Во время изменения доля вселенных, в которых значение равно 0, равномерно уменьшается от 100% до нуля, а доля вселенных, в которых это значение равно 1, соответственно растет от нуля до 100%. На рисунке 9.4 показана точка зрения мультиверса на подобное изменение.