Структура реальности - doc2fb_image_02000014.jpg

Рис. 9.4. Перспектива мультиверса на неприрывное изменение бита от 0 до 1

Из рисунка 9.4 может показаться, что хотя переход от 0 к 1 объективно непрерывен с перспективы мультиверса, он остается субъективно прерывным с перспективы любой отдельной вселенной — представленной, скажем, горизонтальной линией, доходящей до середины рисунка 9.4. Однако это всего лишь ограничение диаграммы, а не реальная характеристика того, что происходит на самом деле. Хотя диаграмма выглядит так, словно в каждое мгновение существует конкретная вселенная, которая «только что изменилась» от 0 до 1, потому что она только что «пересекла границу», на самом деле это не так. Так быть не может, потому что такая вселенная строго идентична любой другой вселенной, в которой бит в данный момент имеет значение 1. Поэтому, если бы жители одной из них испытывали прерывное изменение, То жители всех других испытывали бы то же самое. Значит, ни одна из них не может иметь такой опыт. Обратите также внимание, что, как я объясню в главе 11, идея о чем-то, что движется через диаграмму, подобную рисунку 9.4, на которой уже представлено время, просто ошибочна. В каждое мгновение бит имеет значение 1 в определенной доле вселенных и 0 — в другой. Все эти вселенные в каждый момент времени уже показаны на рисунке 9.4. Они никуда не движутся!

Еще один показатель неявного присутствия квантовой физики в классическом вычислении — это зависимость всех вариантов практической реализации компьютеров типа машины Тьюринга от таких вещей как твердая материя или намагниченные материалы, которые не могли бы существовать в отсутствие квантово-механических эффектов. Например, любое твердое тело состоит из совокупности атомов, состоящих из электрически заряженных частиц (электроны и протоны в ядре). Но из-за классического хаоса ни одна совокупность заряженных частиц не могла бы оставаться устойчивой при классических законах движения. Положительно и отрицательно заряженные частицы просто вылетали бы со своего места, сталкиваясь друг с другом, и конструкция распалась бы. Только сильная квантовая интерференция между различными траекториями движения заряженных частиц в параллельных вселенных предотвращает такие катастрофы и делает возможным существование твердой материи.

Создание универсального квантового компьютера действительно выходит за рамки современной технологии. Как я уже сказал, чтобы обнаружить явление интерференции, нужно вызвать соответствующее взаимодействие всех переменных, которые были отличными во вселенных, вступивших в интерференцию. Чем больше взаимодействующих частиц, тем сложнее спровоцировать взаимодействие, которое продемонстрировало бы интерференцию, то есть результат вычисления. Среди множества технических сложностей работы на уровне одного атома или электрона одна из важнейших состоит в ограждении среды от воздействия различных интерферирующих субвычислений. Поскольку, когда группа атомов подвергается явлению интерференции, причем эти атомы дифференцированно воздействуют на другие атомы этой среды, то интерференцию уже невозможно обнаружить с помощью измерений только исходной группы, и эта группа уже не выполняет какое бы то ни было полезное квантовое вычисление. Это называется декогерентностью. Следует добавить, что эту проблему часто представляют в ложном свете: нам говорят, что «квантовая интерференция — очень чувствительный процесс, и его следует ограждать от любых внешних воздействий». Но это не так. Внешние воздействия способны вызвать малейшие несовершенства, но именно эффект квантового вычисления внешнего мира вызывает декогерентность.

Таким образом, ставка делается на создание субмикроскопических систем, в которых переменные, несущие информацию, взаимодействуют друг с другом, но оказывают на свою среду возможно меньшее влияние. Другое новое упрощение, уникальное для квантовой теории вычисления, частично компенсирует сложности, вызываемые декогерентностью. Оказывается, что в отличие от классического вычисления, где необходимо разрабатывать точно определенные классические логические элементы, как-то И, или и НЕ, при квантовом вычислении точная форма взаимодействий вряд ли имеет значение. В сущности, любую систему взаимодействующих битов атомного масштаба, если она не декогерирует, можно приспособить для выполнения полезных квантовых вычислений.

Известны интерференционные явления, включающие огромные количества частиц, например, суперпроводимость или супертекучесть, но кажется, что ни одно из них невозможно использовать для выполнения хоть сколь-нибудь интересных вычислений. Во время написания книги в лаборатории можно было без труда выполнить только однобитовые квантовые вычисления. Однако, экспериментаторы уверены, что в течение нескольких последующих лет будут созданы двух— и более битовые квантовые логические элементы (квантовые эквиваленты классических логических элементов). Это основные составляющие квантовых компьютеров. Некоторые физики, особенно Рольф Ландауер из Исследовательского Центра IBM, настроены пессимистично относительно перспектив будущих достижений. Они полагают, что декогерентность никогда не будет сведена до того уровня, где можно будет выполнить больше, чем несколько последовательных этапов квантового вычисления. Большинство исследователей из этой области настроены гораздо более оптимистично (хотя возможно, это связано с тем, что над квантовым вычислением решаются работать только очень большие оптимисты!). Уже были построены некоторые специализированные квантовые компьютеры (смотри ниже), и лично я думаю, что появление более сложных квантовых компьютеров — скорее дело нескольких лет, чем десятилетий. Что касается универсального квантового компьютера, то я считаю, что его создание — это тоже только дело времени, хотя мне не хотелось бы предсказывать, сколько времени на это уйдет: десятилетия или века.

Тот факт, что репертуар универсального квантового компьютера содержит среды, передача которых является труднообрабатываемой для классического вычисления, говорит о том, что новые классы чисто математических вычислений тоже должны стать легкообрабатываемыми на этом компьютере. Как сказал Галилео, законы физики выражаются на языке математики, а передача среды эквивалентна оценке определенных математических функций. Действительно, в настоящее время обнаружено множество математических задач, которые можно было бы эффективно решить с помощью квантового вычисления, так как для всех известных классических методов они являются труднообрабатываемыми. Наиболее эффектной из этих задач является задача разложения на множители больших чисел. В 1994 году Питер Шор, работающий в Bell Laboratories, открыл метод, известный как алгоритм Шора. (Пока эта книга корректировалась, были открыты другие эффектные квантовые алгоритмы, включая алгоритм Гровера для очень быстрого поиска длинных списков).

Алгоритм Шора чрезвычайно прост и довольствуется гораздо более скромным аппаратным обеспечением, чем то, которое понадобилось бы для универсального квантового компьютера. А потому вероятно, что квантовое устройство для разложения на множители будет построено задолго до того, как весь диапазон квантовых вычислений станет технологически осуществимым. Эта перспектива имеет грандиозное значение для криптографии (науки, которая занимается секретной передачей информации и установлением ее подлинности). Реальные сети связи могут быть глобальными и иметь огромные, постоянно изменяющиеся наборы участников с непредсказуемыми схемами связи. Непрактично требовать, чтобы каждая пара участников заранее физически обменивалась секретными шифровальными ключами, которые позволили бы им позднее общаться, не боясь, что их подслушают. Криптография с открытым ключом это любой метод отправки секретной информации, при котором ни отправитель, ни получатель не делятся секретной информацией. Самый надежный из известных методов криптографии с открытым ключом основан на трудности обработки задачи разложения на множители больших чисел. Этот метод известен как криптосистема RSA, которая получила свое название в честь Рональда Ривеста (Rivest), Ади Шамира (Shamir) и Леонарда Адельмана (Adelman), которые впервые предложили ее в 1978 году. Этот метод обусловлен математической процедурой, посредством которой сообщение можно закодировать, используя в качестве ключа огромное (скажем, 250-значное) число. Получатель может свободно обнародовать этот ключ, потому что любое сообщение, зашифрованное с его помощью, можно расшифровать, только зная множители этого числа. Таким образом, я могу выбрать два 125-значных простых числа и хранить их в секрете, но перемножив, сообщить всем их 250-значное произведение. Кто угодно может послать мне сообщение, использовав это число как код, но только я смогу прочитать эти сообщения, потому что только мне известны секретные множители.