Но откуда само тектологическое единство? Чем дальше развивается наука, тем больше выясняется, что и оно есть не что иное, как результат генетического единства, что в нем выражается связь происхождения, лишь более отдаленная. Она развертывается на весь мир доступного нам опыта, а тем самым и формальное схождение сводится лишь к более косвенному действительному схождению.

§ 7. Вопрос о жизненной ассимиляции

Не случайно почти все те примеры, на которых мы в самом начале работы иллюстрировали возможность всеобщих организационных форм и законов, а следовательно, и тектологии как науки относились к области фактов схождения. Всякий комплекс заключен в своей среде одновременно и как отливочный материал, и как формовочная модель, определяясь этой средою в первом смысле и частично определяя ее во втором. И всякая повторяемость форм, а следовательно, всякая наблюдаемая закономерность основывается в конечном счете на каком-нибудь схождении.

Поэтому его схема должна в первую очередь руководить нами, когда требуется объяснить непонятную еще повторяемость фактов, загадочную закономерность. В ряду таковых одна из самых близких к нам, самых интересных — жизненная ассимиляция.

Живой организм характеризуют как машину, которая не только сама себя регулирует, но и сама себя ремонтирует. По мере того как элементы тканей организма изнашиваются, он заменяет их материалом, взятым из окружающей среды и «ассимилированным», т. е. приведенным к химическому составу этих самых тканей. «Мертвую», взятую извне материю протоплазма превращает в свою живую материю, не какую-нибудь вообще, а вполне определенную, химически тождественную с молекулами этой именно протоплазмы. Между тем из сотен тысяч видов растений и животных каждый отличается своим особым химизмом, иным составом белков, чем все прочие, и в процессе своей ассимиляции образует именно эти белки из такого же питательного материала, из какого другие виды образуют другие белки. В этом и заключается основная загадка.

Если пищей для организма служат воспринятые извне чужие белки, например, когда человек ест мясо других животных или плоды, стебли, корни растений, то организм сначала при «переваривании» разрушает эти белки, разлагает их на составные части, различные аминокислоты. Затем в тканях из аминокислот он воссоздает уже свои собственные их комбинации, свои специфические белковые вещества. Что же касается растений, то большинство из них сами образуют сначала углеводы, а затем аминокислоты из углекислоты воздуха и воды почвы с ее солями и кислотами.

Итак, почему различный материал, получаемый живой протоплазмой, отливается под ее действием в специфические формы ее собственного состава? Например, почему аминокислоты разрушенных белков нашей пищи из числа миллионов возможных комбинаций укладываются именно в те, которые свойственны белкам нашего тела? Новые материалы в различных изменяющихся пропорциях присоединяются к старому составу, почему не происходит того, что бывает при всяком прямом смешении — контрдифференциации, т. е. изменения этого состава на иной, так сказать, промежуточный между старым составом и новыми материалами?[46]

Мы уже упоминали об одноклеточном животном-хищнике, называемом ацинетой. Она присасывается к какой-нибудь инфузории и по сосательным трубочкам втягивает в себя ее плазму, которая прямо течет в плазму ацинеты и смешивается с ней. Но если бы это было простое смешение, то, очевидно, состав ацинеты был бы лишен всякой устойчивости: каждый раз она превращалась бы в нечто среднее между прежнею ацинетой и высосанной жертвой. Так же и наша пища, хотя не столь быстро, но не менее радикально изменяла бы наш состав. Чтобы этого не получилось, необходимо принять, что в нашем организме, равно как и в организме ацинеты, поступающие материалы проходят через какую-то химическую отливочную форму, откуда могут выйти только в виде специфических для данного организма соединений. Как найти эту отливочную форму?

Здесь нам придется ввести два довольно простых организационных понятия. Первое из них весьма обычно: «регулятор». Это приспособление, которое служит для того, чтобы поддерживать какой-нибудь процесс на определенном уровне. Например, при машинах часто имеется регулятор скорости хода. Если он поставлен, положим, на 1000 оборотов махового колеса в минуту, то при всяком переходе скорости через этот уровень он замедляет движение; а когда, напротив, скорость не достигает этой величины, он действует ускоряющим образом; менее совершенные регуляторы действуют только в одну сторону, например при паровом котле не допускают чрезмерного давления пара, которое могло бы взорвать его. Ясно, что регулятор есть одна из разновидностей «отливочной формы» в нашем смысле слова: при помощи его вызывается «схождение» разных фаз данного процесса на определенной величине.

Второе понятие производно от первого, но сложнее, — бирегулятор, т. е. «двойной регулятор». Это такая комбинация, в которой два комплекса взаимно регулируют друг друга. Например, в паровой машине может быть устроено так, что скорость хода и давление пара взаимно регулируют друг друга: если давление поднимается выше надлежащего уровня, то возрастает и скорость, а зависящий от нее механизм тогда уменьшает давление, и обратно. В природе бирегуляторы встречаются нередко; пример — хотя бы знакомая нам система равновесия «вода — лед» при 0 °C. Если вода нагревается выше нуля, то соприкасающийся с ней лед отнимает излишек теплоты, поглощая ее при своем таянии; если происходит охлаждение, часть воды замерзает, освобождая теплоту, которая не дает и температуре льда опуститься ниже нуля. В общественной организации бирегулятор очень распространен в виде систем «взаимного контроля» лиц или учреждений и т. п.

Бирегулятор есть такая система, для которой не нужно регулятора извне, потому что она сама себя регулирует. И очевидно, если бы живая протоплазма оказалась химическим бирегулятором, тем самым было бы объяснено, почему вступающие в нее материалы не могут изменить ее состава, а сами укладываются в его рамки.

Из белков пищи получаются их структурные элементы, аминокислоты, которые затем поступают в ткани организма. Строение этих тканей коллоидальное: жидкость с рассеянными в ней («диспергированными») более твердыми частицами. Жидкость — это вода с растворенными в ней солями, их «ионами» и другими кристаллоидными веществами, а также газами. Рассеянные частицы — молекулы белков. Каждая из них, громоздкий химический комплекс, которого атомный вес измеряется обыкновенно тысячами, представляется как бы островком в этой жидкости.

При своем очень сложном строении белковые молекулы очень не прочны: их распадение, как и образование из аминокислот, происходит весьма легко при незначительных затратах энергии или с освобождением незначительного ее количества. Очевидно, что между ними и их жидкой средой должно существовать определенное структурное соответствие, гарантирующее их прочность, — т. е. что две эти части образуют систему равновесия, как ее образуют вода и лед при 0 °C. Если такое равновесие существует для белка данного состава и строения, то для иных белков его, вообще говоря, в этой среде быть не должно, и попадая в нее, их молекулы подвергаются разложению и перегруппировкам своих элементов.

В эту же среду поступают частицы аминокислот переваренной пищи. Они находятся в растворе и, естественно, вступают между собой в соединения. Согласно взглядам современной теоретической химии при такой встрече элементов и группировок должны получаться всевозможные комбинации, лишь с различной скоростью реакции, притом с различной устойчивостью ее результатов. Непрочные сочетания тут же распадаются, устраняются отрицательным подбором; удерживаются только прочные, устойчивые. А устойчивы в данной среде, как мы уже знаем, только те, которые соответствуют составу ее наличных белковых молекул. Но это и означает, что поступившие аминокислоты «ассимилируются», группируются в такие же, а не иные белки.