Двери в славу — двери узкие,
Но как бы ни были они узки,
навсегда войдете вы,
кто в Курске добывал
железные куски.

Ленинский декрет 1919 г. об изучении Курской магнитной аномалии ознаменовал собой рождение советской разведочной геофизики.

Ныне известно, что КМА представляет собой два подземных почти параллельных железорудных хребта. Один из них имеет ширину около 25 км и тянется к югу на 400 км, другой на 5 км шире и на 200 км длиннее. Стрелка компаса в этих районах вместо севера иногда показывает на восток, запад и даже на юг!

Однако не все железные руды усиливают магнитное поле Земли, некоторые ослабляют его, что связано с обратным намагничиванием этих пород. Значит, не только «холмы», но и «впадины» на магнитных картах могут указывать на залежи полезных ископаемых. К числу таких необычных магнитных аномалий принадлежит Ангаро-Илимская аномалия, обнаруженная в 1923 г. Есть отрицательные аномалии в Южной Африке и Северной Англии, на территории обеих Америк и в других местах земного шара.

Происхождение отрицательных магнитных аномалий пока неизвестно. Но это, конечно, не мешает разведке полезных ископаемых, вызывающих столь непонятное явление природы.

Существуют различные приборы для измерения напряженности магнитного поля Земли[6] и магнитные обсерватории, где внимательно следят за изменениями земного магнетизма. Магнитные измерения проводят и на суше, и на море, с самолетов и даже с помощью искусственных спутников Земли. Организуются международные исследования, позволяющие в глобальных масштабах выявлять все особенности земного магнетизма и его изменчивости. И вся эта огромная работа очень полезна не только для разведки полезных ископаемых. По характеру магнитных свойств Земли можно судить и о далеком прошлом нашей планеты, и о природе ее ядра, недоступного для прямых исследований.

Загадки палеомагнетизма

Если обыкновенный гвоздь поднести к магниту или тем более потереть о него, гвоздь сам становится магнитом. Он как бы сохраняет память о пребывании в магнитном поле, поэтому это явление остаточного магнетизма, свойственного очень многим телам, иногда образно называют его «магнитной памятью».

Магнитологи неожиданно обнаружили, что обыкновенные кирпичи и древние керамические изделия также обладают остаточным магнетизмом, следами воздействия земного магнитного поля. Этот факт сначала показался удивительным, так как глина и песок принадлежат к практически немагнитным материалам. Однако выяснилось, что во время обжига в печах высокая температура сообщает им значительную магнитную восприимчивость, благодаря чему древние кирпичи и глиняные изделия хранят в себе следы, указывающие на состояние магнитного поля Земли в далеком прошлом, т. е. на палеомагнетизм.

Подобные сведения можно получить и другим путем. Частицы магнетитовых пород, образовавшиеся в процессе их выветривания (разрушения), переносятся реками в океан. Опускаясь на дно океана, они, как крошечные магнитики, ориентируются вдоль магнитных меридианов. Степень намагниченности осадочных пород указывает на напряженность геомагнитного поля в прошлом. Значит, и в этом случае можно выяснить, каким (по направлению и интенсивности) было магнитное поле Земли в разные эпохи ее эволюции.

Источником данных о палеомагнетизме служат также застывшие лавовые потоки. Лава содержит соединения железа и в раскаленном состоянии сравнительно легко намагничивается. А затем, остывая, она сохраняет на долгое время свою «магнитную память».

Разумеется, при всех исследованиях палеомагнетизма надо точно фиксировать положение изучаемого образца на современной Земле. Если речь идет о керамическом изделии, то магнитолог должен установить, каким было положение этого изделия в момент обжига. Затем особыми приемами («магнитной чисткой» с помощью переменного магнитного поля) удаляют ту часть остаточного магнетизма, которая, быть может, была приобретена образцом после обжига. И только тогда, когда «магнитная память» выявлена в чистом виде, можно изучать параметры древнего магнитного поля. Таким образом, кропотливая работа магнитолога напоминает труд художника-реставратора, восстанавливающего истинный облик какой-нибудь древней картины.

К каким же выводам пришли магнитологи в итоге проведенных ими исследований? Оказалось, что за последние 8000 лет магнитное поле Земли изменялось периодически, со средним периодом 1200–1500 лет. Максимальной напряженности оно достигло в начале нашей эры. Трудно сказать, чем вызваны эти вековые колебания геомагнитного поля, так как общепризнанной теории земного магнетизма пока не существует. Возможно, что вековые колебания магнитного поля Земли вызываются наряду с процессами, происходящими в земном ядре, и внешними космическими причинами, например колебаниями солнечной активности.

Как бы там ни было, точно установлено, что геомагнитное поле подвержено не только вековым, но и гораздо более продолжительным и кардинальным изменениям.

Если верить палеомагнитным измерениям, то магнитные полюсы Земли непрерывно странствуют (рис. 19).

Вам, земляне<br />(Издание второе, переработанное) - i_025.jpg

Рис. 19. Смещение геомагнитного полюса (по палеомагнитным данным).

Например, судя по данным, полученным в Африке, около 570 млн. лет назад северный геомагнитный полюс находился вблизи экватора, а затем постепенно переместился на север, к своему теперешнему местоположению. Более того, как это ни удивительно, магнитное поле Земли, по-видимому, многократно испытывало «переполюсовку» или инверсию. Говоря яснее, магнитные полюсы менялись ролями — северный становился южным, и наоборот.

Примечательно, что во время «переполюсовки», судя по остаткам ископаемых животных и растений, происходили резкие скачки в эволюции биосферы — исчезали одни виды животных, уступая место другим. Возможно, что эти скачки были вызваны временным ослаблением и даже исчезновением (перед очередной инверсией) того магнитного экрана, роль которого выполняет магнитное поле Земли. Когда оно существует и достигает значительной напряженности, магнитосфера становится ловушкой для солнечных корпускул и частиц, образующих космические лучи. Наоборот, во время инверсии, космическая корпускулярная радиация беспрепятственно достигает Земли и, возможно, губительно действует на генетический аппарат живых организмов, что ведет к их вырождению.

Мы живем «прикрытые» магнитосферой и радиационными поясами Земли. Но, как показывают измерения, за последние полтора века магнитное поле Земли стало заметно слабее. Если этот процесс будет продолжаться, то примерно через 2000 лет геомагнитное поле и вовсе исчезнет. Может быть, скоро наступит очередная инверсия геомагнитного поля, грозящая земной биосфере какими-то катаклизмами? Поставить такой вопрос, конечно, легче, чем дать на него определенный ответ: наши сведения по палеомагнетизму пока очень скудны.

Динамо-гипотеза и ее конкуренты

Что же все-таки порождает магнитное поле Земли? Почему мы вправе называть нашу планету исполинским магнитом?

Со времени В. Гильберта и до начала XX века господствовало убеждение, что где-то внутри Земли запрятан огромный естественный постоянный магнит, который и создает геомагнитное поле. Однако эта «гипотеза постоянного магнита» не выдерживает критики. Дело в том, что такие легко намагничиваемые материалы, как железо и никель, теряют свои магнитные свойства уже при температуре около 770 °C, а такую температуру Земля имеет на глубине 200 км. Так что ни о каком сильном постоянном магните, скрытом в Земле, говорить не приходится.

Происхождение геомагнитного поля пытались объяснить и по- другому: электрически заряженные частицы, находящиеся на поверхности Земли, при ее вращении, как и всякий электрический ток, порождают магнитное поле. Однако эта гипотеза явно несостоятельна: для создания наблюдаемого геомагнитного поля нужен круговой ток силой в 1 млрд, ампер. При этом на поверхности Земли существовало бы мощное электростатическое поле, чего в действительности нет.