Нельзя все наши топливные ресурсы отдать энергетике, но и нельзя все их отдать химии. Топливо должно стать энергохимическим сырьем, И вместо теплоэлектроцентралей появятся энерготехнологические комбинаты. Кстати сказать, они будут работать совершенно без отходов, дадут не только множество химических продуктов, но и обеспечат горючим новейшие преобразователи энергии — топливные элементы.
Стоит подумать и над тем, как аккумулировать энергию. Электрохимические аккумуляторы дороги и несовершенны, но электрохимия, создавая топливные элементы, осваивает прямое преобразование химической энергии в электрическую. А ведь возможно и обратное превращение. Не будет ли топливный элемент служить и как аккумулятор?
Аккумулирование энергии особенно важно для солнечных станций, работающих только днем. Выдвигается идея использовать вместе водородно-кислородный топливный элемент и электролизер, разлагающий воду на водород и кислород. Солнечные батареи будут днем давать ток в сеть и для электролиза, обеспечивая элемент на ночь топливом.
Предлагают использовать в топливном элементе и бактерии. Для этого их вместе с питательной средой надо подать к одному из электродов, а к другому подвести кислород. Разлагая и окисляя органические вещества, они выделяют водород, который и служит топливом в элементе.
Такие бактерии есть в океане; там для них в придонных слоях изобилие пищи. Есть они я в желудке человека, и, может быть, этим воспользуются, чтобы обеспечить электроэнергией космонавтов. И вообще биохимическая энергетика разовьется всюду, где получаются отходы органических веществ — например, на пищевых комбинатах, на животноводческих фермах.
ХИМИЯ РАДИАЦИОННАЯ
Нагрев и давление «сшивают» из молекул-одиночек длинные молекулярные цепочки, исходный мономер превращают в нужный полимер.
Все это выглядит заманчиво и, главное, просто. На деле же оказывается иное. Нужен еще помощник — катализатор. К тому же нередко мешают примеси, от которых избавиться сложно. Не надо думать, конечно, что трудности вообще непреодолимы. Иначе не было бы всего огромного семейства пластмасс.
Но можно сделать и так: подвести к молекулам энергию другим путем — обстрелять их частицами, тогда высокие температура и давление уже не понадобятся, как не понадобится и катализатор.
Химик, создающий полимеры, отчасти чем-то напоминает садовника. Он выращивает большие молекулы и простые цепочки, короткие или длинные, и кустики с боковыми ветвями; и соединяет одно с другим, получая все более и более сложные химические «деревья». Он может сделать прививку: к молекуле одного полимера «привить» молекулу другого и получить гибрид.
И тогда из полимера жаростойкого, но портящегося в бензине или масле и полимера бензомаслостойкого, но не переносящего жары возникает материал, которому не страшны ни нагрев, ни масло, ни бензин.
Прививка на растении приживается сама по себе. Химику же приходится «пришивать» молекулы, и он может здесь воспользоваться радиацией. Излучения помогут возводить новые молекулярные постройки. Они полимеризуют вещества, которые иначе больших молекул не образуют.
Вот перед нами маленькое озеро жидкого мономера. Облучим эту заготовку. И что же? Жидкость сразу застынет, превратится в прозрачный кусок плексигласа — органического стекла. Теперь перед нами не жидкий мономер, а твердый, кристаллический полимер. Никаких операций с ним не надо производить: ни греть, ни растворять, ни перемалывать.
Можно превратить жидкий мономер и в волокно. А отсюда уже недалеко и до готовой ткани.
Радиационная химия могла бы решить и другую задачу; энергией излучений заставить соединиться азот и кислород воздуха. Тогда мы получили бы возможность готовить удобрения прямо из атмосферы, потому что двуокись азота — превосходное сырье. Давний этот замысел осуществится сравнительно простым путем благодаря радиационной химии.
Ядерный реактор станет и химическим заводом. Ведь радиоактивные осколки — это носители энергии, которая может перестраивать вещество. Из воды в нем получат водород — заготовку для многих химических реакций. Водород в нем же соединится с углеродом, причем произойдет это проще, чем обычно, без повышенного давления. В конечном итоге, в реакторе синтезируются аммиак и спирты, углеводороды и фтороуглероды.
Радиационная химия — это преодоление невозможного. Те превращения, которые она вызывает, недоступны обычной химии. И пусть многое, о чем мы здесь рассказали, пока еще рождено лишь в лаборатории. От лаборатории до производства — один шаг, и он будет сделан в ближайшее время.
ЧИСТОЕ ВЕЩЕСТВО
Наш век по-прежнему остался веком железа. Точнее было бы сказать — веком стали, то есть железа с добавками углерода и других элементов. Загрязняя железо, мы его облагораживаем. Только сталь, а отнюдь не чистое железо и служит основным материалом техники наших дней.
О том, что чистое железо таит в себе неожиданные свойства, могли раньше лишь подозревать. Ведь наводила же на эту мысль знаменитая колонна в Индии, которая, не изменяясь, не окисляясь, стоит уже много веков. Но химия до недавнего времени не умела получать очень чистые вещества. Когда же она научилась это делать, то многие вещества предстали в новом виде, Отсюда произошло их второе рождение, отсюда их широкое вторжение в жизнь.
Германий, например, так бы и остался где-то на задворках, если бы не оказалось, что в чистом виде он отличный полупроводник.
Придется, вероятно, пересмотреть прежние представления об элементах главных и второстепенных. Придется пересмотреть и заявки, которые сделает химия будущего на сырье.
Чистота откроет истинные свойства вещества. Неизвестно, какие неожиданности преподнесет вещество, в котором не будет почти ни одного постороннего атома или молекулы. Само понятие о чистоте со временем будет меняться, один посторонний атом будет приходиться уже не на миллионы, а на триллионы атомов.
А достижим ли верхний предел, можно ли изгнать все примеси, получить идеально чистое вещество? Оказывается, на практике этот идеал недостижим. Чем меньше остается «грязи», тем труднее ее удалять, труднее вылавливать оставшиеся одиночные атомы. Кроме того, вещество невозможно изолировать, оно всегда будет соседствовать с чем-то — даже если поместить его в вакуум. Ведь и идеальный вакуум тоже недостижим. В итоге произойдет обмен, взаимодействие, и какое-то, хотя бы ничтожно малое, загрязнение все же остается.
Достигнуть как можно более высокой чистоты — задача заманчивая. Тогда выявляются подлинные свойства вещества, и зачастую совершенно неожиданные. Химики говорят, что чистота — уже современная — представила им знакомое в новом свете. Металлы хрупкие и ржавеющие оказались эластичными и стойкими, а твердые — мягкими.
Уже теперь можно обнаружить один посторонний атом среди миллиарда основных. И такой точности добиваются не ради рекорда. Столь высокая степень чистоты необходима, чтобы, например, полупроводник германий был полупроводником.
Обычные методы непригодны для контроля качества в ультрачистой металлургии. Разрабатываются новые методы анализа. В будущем химия сможет обнаружить один атом среди сотни триллионов других.
За сверхчистыми веществами стоят сверхжаростойкие сплавы.
Атомная техника требует материалов наивысшей чистоты. Даже миллионная доля процента примесей бора к урану сделает работу реактора невозможной.
Их потребует термоядерная энергетика, основа которой — плазма, нагретая до миллионов градусов.
Что еще обещает химия ультрачистых веществ?
Материалы, побывавшие в ядерном реакторе, загрязнены радиоактивными осколками. Эти примеси надо удалить, остаться должны лишь самые ничтожные их количества. Если бы можно было добиться такой очистки, то произошел бы переворот в технике и быту.
«Его не могут представить себе даже авторы фантастических романов», — замечает академик И, И. Черняев. И он набрасывает действительно сверхфантастическую картинку.