Где бы вы ни находились, в любое время суток и года вас окружает многообразный мир звуков: то пронзительно резких, грубых, неожиданных, то осторожных, ласковых, мелодичных, а часто едва уловимых.

Причины возникновения звуков различны. Есть звуки, создаваемые природными явлениями, стихией, и звуки, создаваемые различными механизмами, транспортом, прохожими и т. д. Эти звуки сливаются в общий звук, воспринимаемый ухом как шум. Но есть звуки вполне определенные, например, музыка, пение, разговорная речь одного человека. Если в первых звуках, т. е. шуме, наблюдается беспорядочность, то вторые носят вполне определенный характер.

Следовательно, звуки бывают неорганизованные и организованные. Но даже среди организованных звуков можно уловить сопровождающие их второстепенные звуки. Слушая, например, мелодию граммофонной пластинки, мы улавливаем и шум иглы, скользящей по пластинке. Слушая игру на рояле, мы отмечаем и такие звуки, как скрип педали, стук пальцев о клавиши, шелест нотной бумаги. При пении слышно дыхание исполнителя.

Чтобы услышать второстепенные звуки, нужно сосредоточить свое внимание на этих звуках и несколько отвлечься от основного звука, что мы практически делаем редко.

Что такое звук?

Зазвонил звонок. Вы слышите резкий звук. Что происходит? А все объясняется довольно просто. Молоточек звонка ударяет по металлической чашке, которая колеблется.

Окружающий чашку звонка воздух от ее колебаний то сгущается, то разрежается. Сгущения и разрежения воздуха быстро распространяются все дальше и дальше, наконец достигая органа слуха (рис. 1).

Звуки в морских глубинах - i_003.jpg

Рис. 1. Колебания чашки звонка создают сгущение и разрежение воздуха.

Таким образом, частицы воздуха под действием колебаний чашки звонка также совершают колебательное движение. В природе можно наблюдать множество примеров колебательного движения. Из них наиболее распространены движение маятника часов, раскачивание качелей (рис. 2), качание груза, подвешенного на спиральной пружине, и т. п.

Звуки в морских глубинах - i_004.jpg

Рис 2. Раскачивание качелей — пример колебательного движения.

Интересный и в то же время простой опыт можно провести на биллиардном столе.

Расположите все шары на столе в одну линию на расстоянии одного — двух сантиметров один от другого. Затем ударьте кием по первому шару и вы увидите, что волновое движение быстро распространилось от первого шара до последнего, при этом все шары, кроме последнего, остались на месте, не считая небольшого передвижения в пределах одного — двух сантиметров (рис. 3).

Звуки в морских глубинах - i_005.jpg

Рис. 3. Последний биллиардный шар резко отскочил, в то время как остальные остались на прежнем месте.

Проще объяснить колебательный характер звука можно на примере образования волн на воде при падении камня.

Бросьте камень в воду и внимательно наблюдайте, что произойдет. В месте падения камня возникает углубление, потом возвышение, а затем неожиданно появляются концентрические круги возвышений и впадин. Это волны. Они быстро передвигаются, что можно определить по увеличению размеров окружностей гребней волн.

При этом распространяются волны, а не частицы воды. Для проверки этого вывода бросьте в воду при распространении волн пробку, поплавок или клочок бумаги и вы убедитесь, что брошенный предмет не передвигается, а только поднимается, и опускается (рис. 4), т. е. совершает колебательные движения.

Звуки в морских глубинах - i_006.jpg

Рис. 4. Плавающий предмет не передвигается по ходу распространения волны, а только опускается и поднимается.

Этот опыт подтверждает, что частицы воды не передвигаются на большие расстояния, а совершают колебательные движения, передавая свою энергию соседним частицам.

Таким образом, возникновение звука при работе звонка можно сравнить с возникновением волн на поверхности воды. Разница только в том, что роль камня выполняет звонок, а роль воды — окружающий воздух.

Проведенные опыты подтверждают и объясняют колебательные движения. Характер же колебаний бывает разный.

При распространении волн на поверхности воды колебания совершаются поперек действия силы, вызвавшей волну. Поплавок на воде то поднимается, то опускается. Поэтому такие волны называются поперечными.

В опыте на биллиарде и сила, вызвавшая колебания, и распространение волн направлены в одну сторону. Такие волны называются продольными.

Какие же колебания по своему характеру более близки к звуковым? Оказывается, продольные колебания биллиардных шаров больше напоминают звуковые волны.

В самом деле, воздух можно представить состоящим из частиц, которые могут перемещаться под действием каких-либо сил. Если, например, компрессор нагнетает в баллон воздух, то отдельные частицы его сжимаются равномерно. Но если в воздухе заставить колебаться какое-либо тело с большей частотой, то частицы воздуха вокруг тела будут сгущаться или разрежаться одновременно с колебаниями тела. Сгущение и разрежение будут передаваться подобно случаю с биллиардными шарами соседним частицам. При определенном числе сгущений и разрежений воздуха в секунду наше ухо их воспринимает как звук. Сами сгущения и разрежения образуют звуковые волны. В местах сгущения давление повышается, а в местах разрежения — понижается (рис. 5).

Звуки в морских глубинах - i_007.jpg

Рис. 5. Изменение давления воздуха в звуковой волне.

Если образовать график изменения давления, он будет иметь вид синусоиды.

Количество звуковых волн, наблюдаемых в какой-либо точке пространства в течение одной секунды, называется частотой. Частота может быть различна. Она является одним из признаков, по которым мы отличаем один звук от другого. Чем больше частота колебаний, тем больше высота звука, т. е. звук имеет более высокий тон. Чем меньше по размерам колеблющееся тело, тем более высокий тон звука оно издает.

Коснитесь вначале тонкой струны гитары, затем толстой и вы услышите различие в тоне (высоте) звучания этих струн. Тонкая струна издаст звук более высокого тона (большей частоты), толстая струна — более низкого тона (меньшей частоты). Частота измеряется в герцах. Если, например, тело колеблется с частотой 200 колебаний в секунду, то говорят, что частота колебаний тела 200 герц.

Второй отличительный признак звуков — их интенсивность, т. е. сила звучания. Интенсивности звука соответствует ощущение громкости. Ударьте вначале слегка в медный колокол или в другой металлический висящий предмет, затем ударьте с большей силой. Вы услышите разные звуки: первый тихий, спокойный, а второй сильный, резкий, несмотря на то что по высоте тона они будут одинаковы. Интенсивность звука зависит от амплитуды, т. е. размаха колебаний источника.

Если металлическую пластину, зажатую в тиски, слегка оттянуть одним пальцем и отпустить, то она будет колебаться с определенной частотой, имея небольшую амплитуду колебаний (рис. 6, а). Если же пластину оттянуть сильно всей кистью и отпустить, то она будет колебаться с той же частотой, но амплитуда ее колебаний будет значительно больше (рис. 6, б), а следовательно, и интенсивность звука, издаваемого ею, будет тоже больше.

Третьим отличительным признаком звуков является тембр.

Звуки в морских глубинах - i_008.jpg