Элементный самарий был получен в начале XX в., но еще несколько десятилетий элемент № 62 не находил применения. Сегодня этот элемент (и его соединения) довольно важен для атомной энергетики. Самарию свойственно большое поперечное сечение захвата тепловых нейтронов — около 6500 барн. Это больше, чем у традиционных материалов регулирующих стержней атомных реакторов — бора и кадмия. Керамические материалы, в которые входит окись самария (порошок бледно-кремового цвета), стали использовать в качестве защитных материалов в реакторостроении.

В последние годы особое внимание ученых и практиков привлекло интерметаллическое соединение самария с кобальтом SmCo5, оказавшееся великолепным материалом для сильных постоянных магнитов. Кроме того, самарий вводят в состав стекол, способных люминесцировать и поглощать инфракрасные лучи. 

Но не всегда самарий полезен.

В заметках о лантаноидах мы уже не раз упоминали о реакторных ядах — продуктах деления урана, которые препятствуют развитию цепной ядерной реакции и даже способны ее погасить. Физики считают, что из радиоактивных изотопов наибольшую опасность в качестве реакторного яда представляет ксенон-135, а из стабильных — изотоп самария с массовым числом 149. Сечение захвата тепловых нейтронов у самария-149 огромно — 66 тыс. барн. Лишь у двух изотопов гадолиния оно еще больше. Но в реакторе образуется больше самария, чем гадолиния. В среднем на долю самария-149 (не считая других изотопов этого элемента) приходится 1,3% всех осколков, а на долю гадолиния-155 вместе с гадолинием-157 — 0,5%.

С реакторными ядами борются разными способами. Иногда приходится даже на время останавливать реактор, чтобы распались ядра радиоактивных ядов. Но в борьбе со стабильным самарием-149 остановка реактора была бы бесполезной, даже вредной. Этот изотоп продолжал бы накапливаться и в выключенном реакторе, так как в него превращался бы другой «осколок» ядерного распада — прометий-149. Напротив, в работающем реакторе происходит как бы самоочищение: при поглощении нейтрона самарий-149 превращается в самарий-150, который поглощает замедленные нейтроны намного хуже. Для реакторов на быстрых нейтронах самарий-149 неопасен — быстрые нейтроны его ядрами не захватываются.

И чтобы покончить с разговором об изотопах, укажем, что природный самарий состоит из семи изотопов с массовыми числами 144, 147, 148, 149, 150, 152 (самый распространенный изотоп) и 154. Самарий-147 альфа-активен, период его полураспада 1011 лет.

Но не только из-за самария-147 радиоактивен красивый минерал самарскит. В его состав наряду с редкими землями, кислородом, железом, танталом и ниобием входит уран…

Из соединений самария интерес для практики (даже сугубо научной практики) пока представляют немногие. Обычные трехвалентные соединения этого элемента мало чем отличаются от соответствующих соединений других, более доступных элементов редкоземельного ряда. Исключение составляет, пожалуй, лишь трибромид самария SmBr3 — самое легкоплавкое вещество из всех редкоземельных бромидов.

Известны и такие соединения, в которых элемент № 62 проявляет валентность 2+. Это, в частности, малорастворимый в воде дифторид SmF2 и кристаллический оранжевого цвета сульфат SmSO4. Последний интересен тем, что при его растворении в разбавленных кислотах из них выделяется водород.

Таким образом, можно сделать вывод: пока для техники самарий важнее, чем все его соединения, вместе взятые. Если, конечно, не считать упоминавшееся выше соединение — сплав с кобальтом.

Европий

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_050.png

Последний редкоземельный элемент цериевой подгруппы — европий — так же, как и его соседи по таблице Менделеева, входит в число наиболее сильных поглотителей тепловых нейтронов. На этом базируется его применение в атомной технике и технике защиты от излучений.

В качестве материала противонейтронной защиты элемент № 63 интересен тем, что его природные изотопы 151Eu и 153Eu, поглощая нейтроны, превращаются в изотопы, у которых почти так же велико сечение захвата тепловых нейтронов.

Радиоактивный европий, полученный в атомных реакторах, использовали при лечении некоторых форм рака.

Важное значение приобрел европий как активатор люминофоров. В частности, окись, оксисульфид и ортованадат иттрия YVO4, используемые для получения красного цвета на телевизионных экранах, активируются микропримесями европия. Имеют практическое значение и другие люминофоры, активированные европием. Основу их составляют сульфиды цинка и стронция, фториды натрия и кальция, силикаты кальция и бария.

Известно, что европием, отделенным от других лантаноидов, пытались легировать некоторые специальные сплавы, в частности сплавы на основе циркония.

Элемент № 63 не во всем подобен другим редкоземельным элементам. Европий — самый легкий из лантаноидов, его плотность всего 5,245 г/см3. У европия же наибольшие из всех лантаноидов атомный радиус и атомный объем. С этими «аномалиями» свойств элемента № 63 некоторые исследователи связывают и тот факт, что из всех редкоземельных элементов европий — наименее устойчивый к корродирующему действию влажного воздуха и воды.

Реагируя с водой, европий образует растворимое соединение Eu(OH)2∙2H2O. Оно желтого цвета, но при хранении постепенно белеет. По-видимому, здесь происходит дальнейшее окисление кислородом воздуха до Eu2O3.

Как мы уже знаем, в соединениях европий бывает двух- и трехвалентным. Большинство его соединений — белого цвета обычно с кремовым, розоватым или светло-оранжевым оттенком. Соединения европия с хлором и бромом светочувствительны.

Как известно, трехвалентные ионы многих лантаноидов могут быть использованы, подобно иону Cr3+ в рубине, для возбуждения лазерного излучения. Но из всех их только ион Eu3+ дает излучение в воспринимаемой человеческим глазом части спектра. Луч европиевого лазера — оранжевый.

Откуда происходит название элемента № 63, понять нетрудно. Что же до истории открытия, то открывали его трудно и долго.

В 1886 г. французский химик Демарсэ выделил из самариевой земли новый элемент, который был, по-видимому, не чистым европием. Но его опыт воспроизвести не удалось. В том же году англичанин Крукс обнаружил новую линию в спектре самарскита. С подобным же сообщением выступил через шесть лет Лекок де Буабодран. Но все данные о новом элементе были в какой-то мере шаткими.

Демарсэ проявил характер. Он потратил на выделение нового элемента из самариевой земли несколько лет и, приготовив, наконец (это было уже в 1896 г.), чистый препарат, ясно увидел спектральную линию нового элемента. Первоначально он обозначил новый элемент греческой заглавной буквой «сигма» — 2. В 1901 г. после серии контрольных экспериментов этот элемент получил свое нынешнее название.

Металлический европий впервые был получен лишь в 1937 г.

Гадолиний

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_051.png

Элемент № 64, гадолиний, открыт в 1880 г. Первооткрыватель этого элемента — швейцарский химик Жан Шарль Галиссар де Мариньяк (1817–1894) — долгое время работал во Франции. Общие научные интересы — редкие земли и спектральный анализ — сблизили его с Лекоком де Буабодраном. Именно Лекок де Буабодран, с согласия Мариньяка, назвал гадолиниевой открытую им новую землю. А через два года после смерти Мариньяка был впервые получен в относительно чистом виде элементный гадолиний. Между прочим, это был первый случай в истории науки, когда химический элемент назвали в память об ученом — Юхане Гадолине, одном из первых исследователей редких земель. Лишь через 64 года появится второй элемент-памятник — кюрий, а затем эйнштейний, фермий, менделевий…

На первый взгляд, по физическим и химическим свойствам гадолиний ничем не отличается от других редкоземельных металлов. Он — светлый, незначительно окисляющийся на воздухе металл — по отношению к кислотам и другим реагентам ведет себя так же, как лантан и церий. Но с гадолиния начинается иттриевая подгруппа редкоземельных элементов, а это значит, что на электронных оболочках его атомов должны быть электроны с антипараллельными спинами.