В 1894 году в «Известиях философского института Новой Зеландии» появилась его первая печатная работа «Намагничение железа высокочастотными разрядами». В 1895 году оказалась вакантной стипендия для получения научного образования, первый кандидат на эту стипендию отказался по семейным обстоятельствам, вторым кандидатом был Резерфорд. Приехав в Англию, Резерфорд получил приглашение Дж. Дж. Томсона работать в Кембридже в лаборатории Кавендиша.

В 1898 году Резерфорд принял место профессора Макгиллского университета в Монреале, где начал серию важных экспериментов, касающихся радиоактивного излучения элемента урана. В Канаде он сделал фундаментальные открытия: им была открыта эманация тория и разгадана природа так называемой «индуцированной радиоактивности»; совместно с Содди он открыл радиоактивный распад и его закон. Здесь им была написана книга «Радиоактивность».

В своей классической работе Резерфорд и Содди коснулись фундаментального вопроса об энергии радиоактивных превращений. Подсчитывая энергию испускаемых радием к-частиц, они приходят к выводу, что «энергия радиоактивных превращений, по крайней мере, в 20 000 раз, а может, и в миллион раз превышает энергию любого молекулярного превращения». Резерфорд и Содди. сделали вывод, что «энергия, скрытая в атоме, во много раз больше энергии, освобождающейся при обычном химическом превращении». Эта огромная энергия, по их мнению, должна учитываться «при объяснении явлений космической физики». В частности, постоянство солнечной энергии можно объяснить тем, «что на Солнце идут процессы субатомного превращения».

Огромный размах научной работы Резерфорда в Монреале — им было опубликовано как лично, так и совместно с другими учеными 66 статей, не считая книги «Радиоактивность», — принес Резерфорду славу первоклассного исследователя. Он получает приглашение занять кафедру в Манчестере. 24 мая 1907 года Резерфорд вернулся в Европу. Начался новый период его жизни.

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведенные им исследования в области распада элементов в химии радиоактивных веществ».

В следующем году Резерфорд предложил Эрнесту Марсдену выяснить, могут ли альфы-частицы отражаться от золотой фольги. Резерфорд был абсолютно убежден в том, что массивные альфа-частицы должны испытывать лишь незначительные отклонения, проходя сквозь золотую фольгу. Большинство из них действительно проходило сквозь фольгу, лишь слабо отклоняясь. Но некоторые альфа-частицы — примерно одна из 20 000, — как заметил Марсден, — отклонялись на углы больше 90 градусов. Марсден даже боялся рассказать об этом Резерфорду и тщательно удостоверился сначала в том, что в его опытах не было ошибки. Резерфорд почти не поверил в этот результат наблюдений.

Много лет спустя Резерфорд вспоминал: «Это было, пожалуй, самым невероятным событием, которое я когда-либо переживал в моей жизни. Это было столь же неправдоподобно, как если бы вы произвели выстрел по обрывку папиросной бумаги 15-дюймовым снарядом, а он вернулся бы назад и угодил в вас».

Но в неправдоподобное пришлось поверить, и в 1911 году Резерфорд пришел к убеждению, что результаты опытов по рассеянию альфа-частиц золотой фольгой можно объяснить, только предположив, что альфа-частицы проходят на весьма малом расстоянии от других положительно заряженных частиц с размерами, много меньшими размеров атомов. Атом золота должен состоять из малого положительного заряженного ядра и окружающих его электронов. Это было рождением идеи об атомном ядре и новой отрасли физики — ядерной физики.

Эта идея была к 1911 году не совсем нова. Ее выдвигали ранее Джонстон Стони, японский физик Нагаока и некоторые другие ученые. Но все эти гипотезы были сугубо умозрительными, тогда как идея Резерфорда основывалась на эксперименте.

Результаты опытов, которые привели Резерфорда к мысли о планетарном строении атома, ученый изложил в большой статье «Рассеяние альфа- и бета-частиц в Веществе и Структура Атома», опубликованной в мае 1911 года в английском «Философском журнале». Физики всего мира могли теперь оценить еще одну, на сей раз убедительно подтвержденную экспериментально, модель строения атома…

Резерфорд был неутомим. И тут же предпринял новое исследование: стал определять количество альфа-частиц, отклоненных фольгой на различные углы в зависимости от электрического заряда ядер атомов того вещества, из которого сделана фольга.

Терпение исследователей было вознаграждено. Анализируя результаты этих опытов, Резерфорд вывел формулу, связывающую число альфа-частиц, отклоненных на определенный угол, с зарядом ядер вещества фольги-мишени. Теперь можно было из опытов по рассеянию альфа-частиц определять природу материала мишени. В руках исследователей появился первый ядерный метод химического анализа!

Ученые сравнили между собой поведение мишеней из различных материалов и установили, что чем больше заряд ядра, тем сильнее отклоняются альфа-частицы от прямолинейного пути. И здесь впервые физические эксперименты приоткрыли завесу тайны над периодическим законом элементов.

Из опытов Резерфорда следовало, что если бы Менделеев расположил элементы в ряд по мере увеличения заряда их ядер, то никаких перестановок делать не потребовалось бы! Физики внесли уточнение в формулировку периодического закона, химические свойства элементов находятся в периодической зависимости не от атомной массы элементов, а от электрического заряда их ядер. Именно в соответствии с величиной заряда ядер элементы выстраиваются в том порядке, в котором расставил их Менделеев, опираясь на свои энциклопедические знания химических свойств элементов…

Что же удерживает электрон от падения на массивное ядро? Конечно, быстрое вращение вокруг него. Но в процессе вращения с ускорением в поле ядра электрон должен часть своей энергии излучать во все стороны и, постепенно тормозясь, все же упасть на ядро. Эта мысль не давала покоя авторам планетарной модели атома. Очередное препятствие на пути новой физической модели, казалось, должно было разрушить всю с таким трудом построенную и доказанную четкими опытами картину атомной структуры…

Резерфорд был уверен, что решение найдется, но он не мог предполагать, что это произойдет так скоро. Дефект планетарной модели атома исправит датский физик Нильс Бор.

Почти в то же время, когда ученые мира получили номер «Философского журнала» со статьей Резерфорда о строении атома, в Копенгагенском университете успешно защитил диссертацию по электронной теории металлов двадцатипятилетний Нильс Бор.

Датский физик Нильс Хенрик Давид Бор (1885–1962) родился в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 году. Бор и его брат Харальд, который стал известным математиком, в школьные годы были заядлыми футболистами. Позднее Нильс увлекался катанием на лыжах и парусным спортом.

Если в школе Нильса Бора в общем считали учеником обыкновенных способностей, то в Копенгагенском университете его талант очень скоро заставил о себе заговорить. Нильса признавали необычайно способным исследователем. Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. В 1907 году он стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием.

В 1911 году Бор решил поехать в Кембридж, чтобы несколько месяцев поработать в лаборатории Дж. Дж. Томсона, первооткрывателя электрона. Мать Нильса и его брат Харальд одобрили эту идею. Не очень рада была, быть может, его невеста Маргарет, но и она согласилась.

Бор тогда мучительно размышлял над моделью Резерфорда и искал убедительные объяснения тому, что с очевидностью происходит в природе вопреки всем сомнениям: электроны, не падая на ядро и не улетая от него, постоянно вращаются вокруг своего ядра. Вот что пишут в книге «Биография атома» К. Манолов и В. Тютюнник: