При низких энергиях, когда kR << 1, рассеяние происходит в состоянии с орбитальным моментом l = 0 (в S-волне) и является сферически симметричным (т. е. происходит с равной вероятностью на любой угол). Область энергий Е, в которой выполняется это условие, ограничена значениями E £ (10—15) Мэв. В указанной области процесс рассеяния полностью описывается с помощью двух параметров — длины рассеяния и эффективного радиуса взаимодействия. При более высоких энергиях (kR ~ 1) для описания процесса рассеяния могут быть эффективно использованы т. н. фазы рассеяния, эксперимент, определение которых даёт важные сведения о С. в. Когда энергия столкновения превышает порог рождения вторичных частиц, в процессах С. в. начинают преобладать неупругие реакции. В области энергий, при которых в рассеянии участвует небольшое число парциальных волн, наблюдаются ярко выраженные пики в эффективном поперечном сечении рассеяния о при энергиях, соответствующих образованию резонансов; при энергиях, превышающих несколько Гэв, число парциальных волн велико и вклад резонансов в полное сечение становится незначительным (рис. 1, а).
Неупругие процессы при высоких энергиях. Представление об адроне как об «облаке» сильно взаимодействующих частиц с определенным радиусом позволяет качественно понять картину С. в. при столкновении адронов высоких энергий. Такие столкновения удобно рассматривать в системе центра инерции (с. ц. и.) сталкивающихся частиц (в системе координат, в которой центр инерции сталкивающихся частиц покоится, т. е. частицы движутся навстречу друг другу с равными по величине и противоположными по направлению импульсами). Пусть при столкновении двух адронов высокой энергии они пролетают друг относительно друга так, что их «облака» перекрываются. Благодаря большой величине константы С. в. такие столкновения должны сопровождаться вылетом большого числа вторичных частиц. Эффективное сечение множеств. процессов должно быть, следовательно, постоянным и равным pR2 (где R — радиус действия С. в., который в рассматриваемой «наглядной» модели равен сумме радиусов двух сталкивающихся «облаков»). Исходя из такой упрощённой модели, легко представить и кинематику рождения вторичных частиц. Можно считать, что при столкновении происходит возбуждение «облаков», которое после их разлёта приводит к испусканию вторичных частиц, летящих в основном по направлениям разлёта обоих «облаков» (рис. 2). Следует ожидать также, что из «центральной» области столкновения могут испускаться в различных направлениях более медленные вторичные частицы. Долгое время, пока единственным источником частиц с энергией свыше нескольких десятков Гэв были космические лучи, считалось, что приблизительно такая картина множественных процессов и наблюдается на опыте (в частности, измерения в очень широкой области энергий указывали на приблизительное постоянство эффективного сечения множественных процессов; более точные заключения в условиях измерений с космическими лучами сделать было трудно). Эксперименты, выполненные на ускорителях высокой энергии — в Серпухове (СССР), Европейском центре ядерных исследований (ЦЕРНе) и Батавии (США), привели к существенным уточнениям картины множественных процессов. Было установлено, что полные эффективные сечения взаимодействия адронов медленно уменьшаются с ростом энергии и становятся приблизительно постоянными при энергиях в несколько десятков Гэв. При дальнейшем увеличении энергии наблюдается рост полных сечений рассеяния (см. рис. 1, б); впервые он наблюдался при рассеянии К+-мезонов на нуклонах на Серпуховском ускорителе (т. н. «Серпуховский эффект»). Опыт показывает, что возрастание сечений взаимодействия s носит универсальный характер для адронов и, по-видимому) приближается к максимально возможному росту, установленному на основе общих принципов современной квантовой теории: s ~ ln2E (где Е — энергия столкновения). Это свидетельствует о том, что при высоких энергиях проявляются новые дополнительные механизмы взаимодействия, приводящие к росту радиуса С. в.
Изучение множественных процессов при высокой энергии даёт ключ для понимания динамики С. в. В этом смысле большое значение имеет изучение особого класса процессов — инклюзивных (когда из совокупности множеств, событий выделяются процессы с рождением каких-либо определенных вторичных частиц и измеряются угловые и энергетические распределения для этих частиц). Впервые эти процессы теоретически рассмотрены и предложены для изучения сов. физиками. Для инклюзивных процессов открыт своеобразный закон подобия — масштабная инвариантность, согласно которой распределение вторичных частиц по импульсам (если измерять импульс в долях максимально возможного импульса при данной энергии столкновения) оказывается одинаковым при разных энергиях столкновения. Масштабная инвариантность в адронных столкновениях (так же как в глубоко неупругих столкновениях пептонов с адронами) может дать сведения о характере особенностей взаимодействия на т. н. световом конусе (т. с. когда взаимодействие распространяется с предельно возможной скоростью — скоростью света). Знание этих особенностей может быть решающим звеном для построения теории С. в.
Упругое рассеяние адронов при высокой энергии. Упругими называются процессы, при которых сталкивающиеся частицы в результате взаимодействия меняют лишь направление своего движения (т. е. не меняется сорт частиц и не происходит дополнительного рождения вторичных частиц). При столкновении адронов высокой энергии, когда они сближаются на расстояние, меньшее радиуса С. в., доминирует рождение вторичных частиц. Тем не менее упругое рассеяние в случае столкновений адронов должно неизбежно возникать из-за волновых свойств частиц. Пояснить это можно на примере волнового процесса — дифракции света. Если параллельный пучок света падает на абсолютно поглощающий («чёрный») шарик радиуса R, то непосредственно за шариком образуется область тени, отвечающая полному поглощению света шариком. Однако на далёких расстояниях благодаря волновой природе света будет происходить дифракция — распространение световых колебаний в область геометрической тени. По порядку величины угол, на который происходит дифракция, равен отношению длины волны света l к радиусу шарика R (т. е. l/R). Из-за интерференции волн дифракционная картина представляет собой совокупность убывающих с ростом углов максимумов и минимумов интенсивности. Для «черного» шарика с «резкими» краями интенсивность в минимумах падает до нуля, а для шарика с «размытыми» краями (т. е. с уменьшающейся к краям поглощающей способностью) различие между максимумами и минимумами интенсивности сглаживается. При уменьшении длины волны l углы, на которые происходит дифракция, уменьшаются, однако общий поток дифрагирующего света остаётся постоянным, т. к. амплитуда дифракции под очень малыми углами обратно пропорциональна длине волны, т. е. растет с уменьшением l. Эффективное сечение дифракции для «чёрного» шарика с резкими краями оказывается равным эффективному сечению поглощения pR2.
Упругое рассеяние при столкновении адронов высокой энергии должно качественно напоминать явление дифракции. Действительно, если сближение адронов на расстояние, меньшее радиуса действия С. в., приводит к множественному рождению частиц (т. е. выводит частицы из упругого канала реакции, что соответствует как бы проявлений более общей симметрии С. в. — поглощению), то упругое рассеяние должно возникать в основном за счёт волновых свойств частиц аналогично дифракции на «чёрном» шарике с радиусом, равным радиусу С. в. Поскольку длина волны де Бройля для частиц с импульсом p равна
= /|p|, то упругое рассеяние адронов при высоких энергиях должно происходить в основном на малые углы — в конусе с угловым раствором J ~ /R = /|p|R. При этом амплитуда упругого рассеяния для очень малых (в пределе — нулевых) углов рассеяния должна расти пропорционально импульсу частиц. Этот вывод следует из оптической теоремы, если считать, что полное эффективное сечение рассеяния при высоких энергиях остается постоянным.