Струи, следы и зоны перемешивания обладают приблизительно автомодельностью: в каждом сечении х = const любого из этих Т. т. на не слишком малых расстояниях х от начального сечения можно ввести такие масштабы длины и скорости L (x) и v (x), что безразмерные статистические характеристики гидродинамических полей (в частности, профили осреднённой скорости), полученные при применении этих масштабов, будут одинаковыми во всех сечениях.
В случае свободных Т. т. область пространства, занятая завихренным Т. т., в каждый момент времени имеет чёткую, но очень неправильную форму границ, вне которых течение потенциально. Зона перемежающейся турбулентности оказывается здесь значительно более широкой, чем в пограничных слоях.
Лит. см. при ст. Турбулентность.
А. С. Монин.
Рис. 1. Турбулентное течение.
Рис. 2. Профиль осреднённой скорости: а — при ламинарном, б — при турбулентном течении.
Турбулентность
Турбуле'нтность, явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики (скорость, температура, давление, плотность) испытывают хаотические флуктуации и потому изменяются от точки к точке и во времени нерегулярно. Этим турбулентные течения отличаются от так называемых ламинарных течений. Большинство течений жидкостей и газов в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т.п.) и в технических устройствах (в трубах, каналах, струях, в пограничных слоях около движущихся в жидкости или газе твёрдых тел, в следах за такими телами и т.п.) оказываются турбулентными.
Благодаря большой интенсивности турбулентного перемешивания турбулентные течения обладают повышенной способностью к передаче количества движения (и потому к повышенному силовому воздействию на обтекаемые твёрдые тела), передаче тепла, ускоренному распространению химических реакций (в частности, горения), способностью нести и передавать взвешенные частицы, рассеивать звуковые и электромагнитные волны и создавать флуктуации их амплитуд и фаз, а в случае электропроводной жидкости — генерировать флуктуирующее магнитное поле и т.д.
Т. возникает вследствие гидродинамической неустойчивости ламинарного течения, которое теряет устойчивость и превращается в турбулентное, когда так называемое Рейнольдса число Re = l u/n превзойдёт некоторое критическое значение Rekp(l и u — характерные длина и скорость в рассматриваемом течении, n — кинематический коэффициент вязкости). По экспериментальным данным, в прямых круглых трубах при наибольшей возможной степени возмущённости течения у входа в трубу Rekp » 2300 (здесь l — диаметр трубы, u — средняя по сечению скорость). Уменьшая степень начальной возмущённости течения, можно добиться затягивания ламинарного режима до значительно больших Rekp, например в трубах до Rekp » 50 000. Аналогичные результаты получены для возникновения Т. в пограничном слое.
Возникновение Т. при обтекании твёрдых тел может проявляться не только в виде турбулизации пограничного слоя, но и в виде образования турбулентного следа за телом в результате отрыва пограничного слоя от его поверхности. Турбулизация пограничного слоя до точки отрыва приводит к резкому уменьшению полного коэффициента сопротивления тела. Т. может возникнуть и вдали от твёрдых стенок, как при потере устойчивости поверхности разрыва скорости (например, образующейся при отрыве пограничного слоя или являющейся границей затопленной струи или поверхностью разрыва плотности), так и при потере устойчивости распределения плотностей слоев жидкости в поле тяжести, то есть при возникновении конвекции. Дж. У. Рэлей установил, что критерий возникновения конвекции в слое жидкости толщиной h между двумя плоскостями с разностью температур dT имеет вид Ra = gbh3dT/nc, где g — ускорение силы тяжести, b — коэффициент теплового расширения жидкости, c — коэффициент её температуропроводности. Критическое число Рэлея Rakpимеет значение около 1100—1700.
Вследствие чрезвычайной нерегулярности гидродинамических полей турбулентных течений применяется статистическое описание Т.: гидродинамические поля трактуются как случайные функции от точек пространства и времени, и изучаются распределения вероятностей для значений этих функций на конечных наборах таких точек. Наибольший практический интерес представляют простейшие характеристики этих распределений: средние значения и вторые моменты гидродинамических полей, в том числе дисперсии компонент скорости
(где пульсации скорости, а чёрточка наверху — символ осреднения); компоненты турбулентного потока количества движения (так называемое напряжения Рейнольдса) и турбулентного потока тепла (r — плотность, с — удельная теплоёмкость, Т — температура). Статистические моменты гидродинамических полей турбулентного потока должны удовлетворять некоторым уравнениям (вытекающим из уравнений гидродинамики), простейшие из которых — так называемые уравнения Рейнольдса, получаются непосредственным осреднением уравнений гидродинамики. Однако точного решения их до сих пор не найдено, поэтому используются различные приближённые методы.Основной вклад в передачу через турбулентную среду количества движения и тепла вносят крупномасштабные компоненты Т. (масштабы которых сравнимы с масштабами течения в целом); поэтому их описание — основа расчётов сопротивления и теплообмена при обтекании твёрдых тел жидкостью или газом. Для этой цели построен ряд так называемых полуэмпирических теорий Т., в которых используется аналогия между турбулентным и молекулярным переносом, вводятся понятия пути перемешивания, интенсивности Т., коэффициента турбулентной вязкости и теплопроводности и принимаются гипотезы о наличии линейных соотношений между напряжениями Рейнольдса и средними скоростями деформации, турбулентным потоком тепла и средним градиентом температуры. Такова, например, применяемая для плоскопараллельного осреднённого движения формула Буссинеска t = Adu/dy с коэффициентом турбулентного перемешивания (турбулентной вязкости) А, который, в отличие от коэффициента молекулярной вязкости, уже не является физической постоянной жидкости, а зависит от характера осреднённого движения. На основании полуэмпирической теории Прандтля можно принять
, где путь перемешивания l — турбулентный аналог длины свободного пробега молекул.Большую роль в полуэмпирических теориях играют гипотезы подобия (см. Подобия теория). В частности, они служат основой полуэмпирической теории Кармана, по которой путь перемешивания в плоскопараллельном потоке имеет вид l = — cu’/u’’, где u = u(у) — скорость течения, а c — постоянная. А. Н. Колмогоров предложил использовать в полуэмпирических теориях гипотезу подобия, по которой характеристики Т. выражаются через её интенсивность b и масштаб l (например, скорость диссипации энергии e ~ b3/ l). Одним из важнейших достижений полуэмпирической теории Т. является установление универсального (по числу Рейнольдса, при больших Re) логарифмического закона для профиля скорости в трубах, каналах и пограничном слое:
,