В 1928 году Люси Уиллс, выпускница Лондонской медицинской школы для женщин, получила грант на поездку в Бомбей для исследования этой анемии. Среди гематологов Люси выделялась своей неординарностью — предприимчивая молодая женщина, наделенная неиссякаемым любопытством к работе крови и готовая поехать в далекую страну, чтобы разрешить загадку таинственной анемии. Она знала работы Майнота, однако обнаружила, что бомбейская анемия в отличие от описанной им не лечится ни его питательными смесями, ни витамином В12. К своему изумлению, Люси Уиллс выяснила, что бомбейскую анемию можно лечить мармайтом, популярной среди приверженцев здорового образа жизни в Англии и Австралии питательной белковой пастой, изготавливаемой из пивных дрожжей. Уиллс так и не удалось выявить ключевого химического элемента в мармайте. Она назвала его «фактором Уиллс».
Фактор Уиллс оказался фолиевой кислотой, или фолатом, витаминоподобным веществом, содержащимся в овощах и фруктах, а также в изобилии присутствующим в мармайте. Для деления клеткам необходимо сделать копии ДНК — вещества, несущего генетическую информацию клетки. Фолиевая кислота — жизненно необходимый элемент для построения ДНК, а следовательно, и для клеточного деления. Поскольку клетки крови на фоне прочих клеток организма делятся с поистине устрашающей скоростью — за день образуется более 300 миллиардов клеток, — то генезис крови зависит от наличия фолиевой кислоты, без которой (в частности, при недостатке овощей в диете, что и произошло в Бомбее) образование в костном мозге новых клеток крови прекращается. Миллионы недозрелых клеток накапливаются, будто груда деталей на сломанном конвейере. Костный мозг превращается в неисправный завод, истощенный биологический комбинат, странным образом напоминающий пресловутые хлопчатобумажные бомбейские фабрики.
Взаимосвязи между витаминами, костным мозгом и нормальной кровью особенно занимали Фарбера в начале лета 1946 года. Впрочем, первые клинические испытания, навеянные этой зависимостью, обернулись чудовищной ошибкой. Люси Уиллс обнаружила, что фолиевая кислота восстанавливает нормальное кроветворение у пациентов с алиментарной анемией. Поэтому Фарбер задумался, способна ли фолиевая кислота восстанавливать нормальную кровь и у детей, больных лейкемией. Следуя этим смутным догадкам, он раздобыл немного синтетической фолиевой кислоты, набрал группу детей с лейкемией и начал делать им инъекции.
За следующие несколько месяцев он понял, что фолиевая кислота не останавливает лейкемию, а лишь пришпоривает ее. У одного пациента количество лейкоцитов подскочило вдвое, у другого лейкозные клетки прорвались в кровяное русло и образовали островки злокачественных клеток в коже. Фарбер торопливо прекратил эксперименты. Он назвал этот феномен акселерацией, словно некий опасный объект, перейдя в состояние свободного падения, стремительно движется навстречу неизбежному концу.
Педиатров Детской больницы эксперименты Фарбера привели в ярость. Аналоги фолиевой кислоты не просто подстегивали лейкемию, но и ускоряли смерть детей. Однако Фарбера это заинтриговало. Если фолиевая кислота ускоряет течение лейкемии у детей, быть может, следует перекрыть ее поставку в организм каким-нибудь другим лекарством — антифолатом? Может ли химическое вещество, блокирующее размножение лейкоцитов, остановить лейкемию?
Наблюдения Майнота и Уиллс начали складываться в туманную общую картину. Если костный мозг — активная клеточная фабрика, в которой все начинается, то при лейкемии тот же костный мозг подобен фабрике, работающей на износ, хаотически производящей раковые клетки. Майнот и Уиллс включили производственные линии костного мозга, снабжая организм микроэлементами. Но нельзя ли выключить злокачественный костный мозг, лишив организм этих веществ? Можно ли терапевтическими средствами воспроизвести в больницах Бостона анемию рабочих из Бомбея?
Проделывая пешком неблизкий путь от лаборатории в подвалах Детской больницы до своего дома на Эймори-стрит в Бруклайне, Фарбер неустанно размышлял о подобном лекарстве. Вечерние трапезы в обитой темным деревом столовой проходили холодно и рассеянно. Норма, жена Фарбера, писательница и музыкант, рассуждала об опере и поэзии, Сидней — о вскрытиях, экспериментах и пациентах. Под несущиеся вслед гаммы он возвращался в больницу, неотвязно преследуемый мыслями о лекарстве от рака. Фарбер воображал его себе, ощущал физически, со всем пылом фанатичного энтузиаста. Однако он не знал, ни что это за лекарство, ни как его назвать. Слово «химиотерапия» в том смысле, как мы понимаем его сейчас, для раковой медицины еще не прозвучало[7]. Разработанного инструментария «антивитаминов», о которых столь страстно мечтал Фарбер, не существовало и в помине.
Фолиевую кислоту для первого катастрофического клинического испытания Фарбер получал из лаборатории своего старого друга, химика Йеллапрагады Суббарао — или, как попросту называли его большинство коллег, Йеллы. Во многих отношениях Йелла был самым настоящим первопроходцем: врач, ставший клеточным физиологом, химик, невзначай заинтересовавшийся биологией. Его блужданиям в науке предшествовали куда более отчаянные и полные приключений настоящие скитания. Он появился в Бостоне в 1923 году, без средств к существованию и слабо представляющий, что ждет его в Америке. Медицинское образование Йелла получил в Индии и добился стипендии для обучения в Гарвардской школе тропической медицины. Как выяснилось, бостонский климат разительно отличался от тропического. Посреди стылой зимы, без лицензии на занятия медициной в США, работу по специальности Йелла найти не мог. Он начал с должности ночного дежурного в Бригхемской больнице: открывал двери, перестилал простыни и выносил судна.
Близость к медицине оправдалась. Суббарао завел друзей и знакомых в больнице и стал научным сотрудником на кафедре биохимии. Его первоначальный проект заключался в выделении из живых клеток отдельных очищенных молекул, то есть химическое препарирование клеток с целью определения их состава — по сути, биохимическое «вскрытие» живых клеток. Этот подход требовал не воображения, а бесконечного терпения и упорства, однако принес поразительные дивиденды. Суббарао выделил молекулу, получившую название АТФ (аденозинтрифосфат) — источник энергии для всех живых организмов (АТФ переносит химическую «энергию» в клетке), и еще одну молекулу, получившую название «креатин» — переносчик энергии в мышечных клетках. Любого из этих достижений хватило бы, чтобы гарантировать ему место профессора в Гарварде. Однако Суббарао — иностранец с сильным акцентом, нелюдимый полуночник, вегетарианец, обитающий в крохотной квартирке, — водил компанию лишь с другими такими же нелюдимыми полуночниками, в частности с Фарбером. В 1940 году, не добившись ни постоянного контракта, ни признания, Йелла переехал на север штата Нью-Йорк, где возглавил группу химического синтеза в фармацевтической компании «Лаборатории Ледерле», принадлежавшей «Американ цианамид корпорейшн». Он быстро переформулировал свою прежнюю стратегию и сосредоточился на изготовлении синтетических аналогов обнаруженных им в клетках природных соединений, надеясь использовать их как биологически активные добавки. В 1920-е годы другая фармакологическая компания, «Эли Лили», сколотила целое состояние на продаже концентрированной формы витамина В12, недостающего элемента при злокачественном малокровии. Суббарао решил сконцентрироваться на еще одной разновидности малокровия, всеми забытой анемии при недостаточности фолиевой кислоты. Однако в 1946 году, после бесчисленных попыток выделить это вещество из свиной печени, он сменил тактику и при помощи группы ученых, включая молодого химика Харриет Килти, начал синтезировать фолиевую кислоту лабораторными методами.
Химические реакции, используемые при производстве фолиевой кислоты, принесли неожиданный бонус. Поскольку процесс проходил через несколько промежуточных стадий, Суббарао и Килти могли, незначительно изменяя условия, создавать различные вариации фолиевой кислоты. Эти вариации, очень близкие по молекулярному составу, обладали парадоксальными свойствами. Энзимы и рецепторы в клетках, как правило, распознают молекулы по их химической структуре. Однако «обманные» молекулярные структуры, очень похожие на природные молекулы, могут связываться с рецептором или энзимом, блокируя его действие — как поддельный ключ застревает в замке. Некоторые из молекулярных имитаций Йеллы, таким образом, могли служить антагонистами фолиевой кислоты.