А.Ж. Даже не совсем так. В каком-то смысле так, но не все нейроны будут обучены к концу жизни. И тут, как ни странно, на основании такой схемы можно устроить практически полезные системы. Вот на этом слайде показан прототип системы управления для активной подвески автомобиля, где система адаптируется к свойствам этого автомобиля. Предполагается, что эта подвеска оснащена некоторым активным элементом, который может автомобиль подталкивать вверх-вниз, при этом управляющая система со временем понимает, как это делать. Внизу нарисована база знаний, которую эмпирическая система получила, она отражает свойства данного конкретного автомобиля: как этот автомобиль реагирует на то или другое воздействие. Пользуясь этими знаниями, система может так аккуратно управлять этой подвеской, что она сглаживает нежелательные колебания и заставляет автомобиль двигаться так, как вам надо.

Вот слева график: это сильные колебания автомобиля, обычного автомобиля при наезде, скажем, на препятствие. Справа мы видим гораздо более гладкую кривую. Очень интересная, такая практически полезная вещь.

В.Н. А можно вам вопрос? С какой скоростью она учится? Скажем, можно сопоставить её скорость обучения со скоростью обучения водителя: вот человек купил новый автомобиль, и он к нему приспосабливается. И ваша система…

А.Ж. Наверное, можно сопоставить. Конечно, здесь очень много зависит от процессора, от различных деталей, и т.д. Можно обучаться с нуля, можно заставить переучивать некую среднюю базу знаний, заранее, скажем, накопленную. Тут очень много различных вариантов. Но в принципе, естественно, есть период, когда она учится, больше учится, чем управляет. Но постепенно доля управления становится больше, чем доля обучения.

Покажите, пожалуйста, следующую картинку. Примерно похожая адаптивная система управляет угловым движением спутника. Я хочу обратить внимание, что в эту систему не закладывается математическая модель объектов в том виде, как это обычно делается. Там нет системы дифференциальных уравнений, где какие-то коэффициенты надо было бы уточнить. Тут совсем нет этой системы. Здесь знание – это, скорее, некоторое отображение из множества в другое множество. Из множества образов, множества действий, множества образов, которые отражают результаты. Это ещё связано с оценками. И вот эти отношения элементов этих множеств система и находит. База знаний имеет именно такой смысл.

В данном случае, очень полезная система, потому что точную математическую модель космического аппарата, его углового движения, построить очень трудно, потому что вы не можете на Земле очень точно померить различные коэффициенты, которые входят в эту модель, потому что вы не можете воспроизвести вакуум, не можете произвести невесомость на Земле. Не можете воспроизвести перепады температуры, ещё что-то.

В конце концов, что-то может сломаться в космосе, или заклинить, и реакция этого объекта на то или другое воздействие будет не такой, как вы заложили в модель. И качество будет другое.

А вот эта системка может прямо по ходу дела адаптироваться именно к тому объекту, который вы ей дали.

А.Г. У нас очень мало времени. Я прошу прощения, я бы хотел, чтобы вы напоследок задали те вопросы, на которые у вас пока нет ответов. Для того чтобы понять, куда вместе вы можете идти дальше. Я имею в виду две науки.

А.Ж. Если вы запустите третий клип в это время, я сейчас покажу связь. Здесь видно, как на верхнем графике объект, который должен выправляться, становится глаже по мере того, как база знаний справа заполняется. Обратите внимание, внизу – действие. Вы видите эти две моды: поисковый режим, небольшой разброс пробных действий. Он сменяется резкими широкими скачками.

Посмотрите, как этот поиск постепенно будет сходиться, и по мере того как знаний становится всё больше и больше, верхняя кривая, в конце концов, станет другой: посмотрите, как аккуратно он управляет отдельными слабыми толчками. Это похоже на то, как ребёнок учится ездить на велосипеде. Вначале есть какие-то грубые, несуразные движения, он падает. Но постепенно он находит правильные манёвры. И вот он ещё едет, дёргая руль, и потом вдруг он едет уже ровно.

А.Г. И всё-таки…

В.Н. И собственно, тогда вопрос: возвращаясь к ручейнику, можно ли на основе этой системы управления создать робота, который выработал бы такую же или похожую, столь же эффективную или столь же неэффективную систему поиска, как у ручейника? Как вам это представляется на основании моего рассказа, который ничего не говорит о механизмах, а говорит только о правилах поведения?

А.Ж. Я думаю, что поведение нашей системы, которое я сейчас показал, предшествует той тактике поведения, которую демонстрирует ручейник – это выработка элементарных рефлексов. Но следующие модели поведения уже, видимо, будут сравнимы с ручейником. Хотя на графике, который мы видели последним, показано, как мода небольших колебаний сменялась широкими пробными скачками.

А.Г. Да, график получался очень схожий с тем, что…

В.Н. Переключение между двумя модами.

А.Ж. Мы это обнаружили, на самом деле, буквально в течение последнего часа, это сходство. Наверное, оно неслучайно. Здесь надо просто посмотреть.

А.Г. Я думаю, что на этом мы остановимся. Надеюсь, что сходство неслучайно. И хочу напомнить, что передача эта междисциплинарная. Я бываю абсолютно счастлив в тот момент, когда удаётся свести людей, которые представляют две разные профессии, с тем, чтобы выработать общую стратегию поиска…

В.Н. …Истины.

А.Г. …того, что нам так необходимо.

В.Н. Спасибо вам, что вы нас свели.

Миры Андрея Платонова

24.07.03
(хр.00:48:48)

Участники:

Наталья Васильевна Корниенко – член-корреспондент РАН

Евгений Яблоков – кандидат филологических наук

Александр Гордон: Доброй ночи! Я полагаю, что большая часть аудитории этой программы уже привыкла к мысли, что мы, слушая гостей, часто не понимаем, о чём они говорят, да и не знаем предмета. Да это и не удивительно, когда речь идёт о квантовой механике, скажем, или о когнитивной природе живых существ. Когда речь идёт о писателе, как казалось, широко изданном, о писателе, который составляет законную славу двадцатого века, славу русской литературы, писателе, который является одним из моих любимых писателей, об Андрее Платонове, и как мы сегодня поймём, мы не знаем большую часть этого айсберга, вот тут становится и странно, и страшно.

Давайте начнём с главного, наверное, с непонятости, не с непонятности, а с непонятости.

Наталья Корниенко: Можно начну сразу с платоновской цитаты? Повесть «Сокровенный человек» в принципе всегда была открыта для чтения. Есть там эпизод, когда машинист останавливает поезд (любимый образ у Платонова), и начинается диалог: «Хороший парень у нас на паровозе, а? – спросил старый рабочий Шугаев. – Ну что ты акаешь, – ответил Пухов. – Горе кругом, а ты разговариваешь. – Шугаев поэтому замолчал».

Филолог ли или просто читатель понимает, что ЭТО какая-то иная вселенная, где всё по-другому устроено. Не скажешь, что вот здесь философский разговор, а здесь нечто другое, здесь всё философично. Платонов – это вселенная, устроенная по своим грандиозным законам, и мы эту вселенную, конечно, всё стараемся понять. Платонов в русской литературе – это сказка и чудеса. А чудесность, как известно, мы не всегда можем понять. Я думаю, мы ещё молодые по возрасту осмысления феномена Платонова.

В последние 10–15 лет всё время говорится, что мы всё возвращаем, возвращаем, возвращаем наследие писателя. А вопрос ведь и в том, а можем ли мы вернуть ЭТО? Готова ли гуманитарная наука и вообще общественность в широком смысле понять масштаб наследия и вернуть? Что это за наследие? Литературная часть наследия – это проза, это и драматургия. Мы не всё знаем, даже работая много лет, я не отвечу на вопрос, сколько пьес он написал. Шесть-семь-восемь-девять-десять?..