30 м: 2 сек = 15 м/сек (или 54 км/ч).

Электроника?.. Нет ничего проще! - _288.jpg

Следовательно, я могу сказать, что скорость в данном месте есть производная от пройденного пути по времени. Эта производная велика, когда пройденный путь быстро увеличивается с увеличением времени.

Дифференцирование с помощью схемы

Н. — Довольно туманно. Мне представляется, что это несколько напоминает схему на рис. 64. Если входное напряжение увеличивается быстро, то зарядный ток конденсатора С будет большой, что даст большое напряжение на выходе.

Л. — Ты очень хорошо понял. Но в нашем примере с автомобилем, разумеется, не может быть резкого изменения пройденного пути, так как соответствующая этому изменению скорость была бы бесконечно большой…

Н. — Вот чему могли бы позавидовать все бегуны!

Интеграл

Л. — Но это невозможно, так как «бесконечно большую» скорость нужно было бы достичь за ничтожно малый отрезок времени, что в свою очередь требует бесконечно большого ускорения. Но поговорим теперь о математическом определении интегрирования. Ты можешь получить прекрасное представление на том же примере с автомобилем, если теперь предположить, что для каждого момента мы знаем не место машины на дороге, а ее скорость (например, зафиксировав самописцем показания спидометра). Задача сводится к определению пройденного автомобилем пути к соответствующему моменту времени.

Н. — Это совсем просто. Достаточно умножить скорость на время движения.

Л. — Твои рассуждения совершенно справедливы, но только для случая, когда скорость остается строго постоянной. Однако имеются серьезные основания полагать, что этого не случится. Наш автомобилист будет проезжать через населенные пункты, где ему придется снизить скорость, ему попадутся хорошие участки дороги, где он сможет «жать на всю железку», и в результате его скорость не будет постоянной.

Н. — Тогда я совсем не знаю, что делать…

Л. — Мы просто-напросто применим твой метод, но разделим время на небольшие интервалы, каждый из которых настолько короток, что в его пределах скорость можно рассматривать как неизменную…

Н. — Но это все изменяет! Твои расчеты не будут соответствовать реальной действительности.

Л. — Именно такого заявления от тебя я и ждал. Чем больше интервалов мы возьмем, тем ближе наша оценка будет к реальной действительности. Не забывай, что обычно скорость автомобиля довольно медленно изменяется во времени…

Н. — Я такого мнения не придерживаюсь. Помнишь я говорил тебе о своем приятеле, купившем спортивный автомобиль; ему нужно всего лишь несколько секунд, чтобы разогнать свою машину до 180 км/ч…

Л. — Согласен, но я-то говорил тебе о нормальных людях. Если мы возьмем очень короткий интервал времени, например, 1 сек, и если зафиксированная в какой-то момент этого интервала скорость будет около 36 км/ч (или 10 м/сек), то мы можем сказать, что пройденный за эту секунду путь будет очень близок к 10 м.

Складывая рассчитанные таким образом отрезки пути, пройденные за очень короткие интервалы времени, мы получим сумму, состоящую из огромного числа малых слагаемых, при этом полученный результат будет достаточно близок к истинному.

В своих действиях математика исходит из подобного представления, доводя дело до крайности — предполагая, что количество интервалов бесконечно растет, а протяженность их бесконечно уменьшается. В этом случае они говорят, что проинтегрировали некоторую функцию.

Электроника?.. Нет ничего проще! - _289.jpg

Н. — Термин этот мне в высшей степени не нравится. Но как бы там ни было, твой знаменитый «интеграл» кажется мне прямой противоположностью тому, о чем ты мне только что говорил, а именно производной. Если память мне не изменяет, вычисление производной позволяет определить скорость по местоположению, а противоположная операция позволяет рассчитать местоположение по скорости.

Л. — Ты очень правильно понял. Только математики говорят не противоположная, а обратная операция. Я думаю, что теперь ты видишь аналогию между интегрированием и действием схемы рис. 70…

Н. — Я не вижу никакого сходства.

Электроника?.. Нет ничего проще! - _290.jpg
Интегрирование с помощью схемы

Л. — Сейчас увидишь. Предположим, что на вход этой схемы я подаю постоянное напряжение. Какое напряжение получим мы на выходе?

Н. — Ну, разумеется, классическую кривую заряда конденсатора — кривая напряжения поднимается и затем округляется, стремясь достичь максимума, равного приложенному на вход постоянному напряжению.

Л. — Прекрасно, Незнайкин. Если внимательнее рассмотреть эту кривую, то заметим, что в ней имеется небольшой участок равномерного подъема, который соответствует времени, когда выходное напряжение мало по сравнению с входным. Впрочем, это абсолютно логично, ведь на выводах резистора действует разность входного и выходного напряжений. Если входное напряжение имеет постоянную величину, выходное удерживается небольшим и проходящий через R зарядный ток практически остается постоянным. В этих условиях заряд конденсатора нарастает равномерно (а правильнее сказать «линейно»).

Н. — Хорошо, до сих пор все понятно, но я не вижу никакой связи между твоей историей с автомобилем и интегрированием.

Электроника?.. Нет ничего проще! - _291.jpg

Л. — Все очень просто. Подай на вход схемы рис. 70 напряжение, в каждый момент пропорциональное скорости автомобиля. Что произойдет, если при этом предположить, что выходное напряжение останется небольшим?

Н. — Раз мы предположили, что выходное напряжение ничтожно мало, протекающий по резистору ток в каждый момент будет пропорционален входному напряжению. Следовательно, конденсатор будет заряжаться быстрее или медленнее в соответствии со значением входного напряжения (т. е. если я не ошибаюсь, скорости автомобиля).

Л. — Нет необходимости анализировать дальше, так как все нас интересующее уже произошло: в каждый момент напряжение на выводах заряжающегося конденсатора повышается точно так же, как увеличивается пройденный автомобилем путь.

Если скорость большая (входное напряжение высокое), конденсатор зарядится быстро, напряжение на его выводах поднимается так же быстро, как увеличивается пройденный автомобилем путь, когда он движется быстро. Если в один прекрасный момент автомобиль остановится, входное напряжение становится равным нулю и конденсатор перестает заряжаться.

Н. — А, нет. Я с тобой совершенно не согласен; когда напряжение равно нулю, конденсатор разряжается.

Л. — Строго говоря, ты прав. Но мы предположили, что входное напряжение, а также сопротивление резистора и емкость конденсатора велики. Напряжение на выводах конденсатора всегда очень мало по сравнению с нормальными значениями входного напряжения, когда входное напряжение исчезает, конденсатор действительно немного разряжается, но этот разряд ничтожно мал.

Электроника?.. Нет ничего проще! - _292.jpg

Н. — Теперь я начинаю понимать, и у меня даже возникла идея.

Л. — Обычно к твоим идеям я отношусь с недоверием, но все же расскажи, что ты придумал.