Можно расплавить в одном тигле кадмий с висмутом. После охлаждения мы увидим в микроскоп смесь кристалликов кадмия и висмута. Висмут и кадмий тоже не образуют твердых растворов.

Необходимым, хотя и не достаточным, условием возникновения твердых растворов является близость молекул или атомов смешивающихся веществ по форме и размерам. В этом случае при замерзании смеси образуется один сорт кристалликов. Узлы решетки каждого кристалла обычно беспорядочно заселены атомами (молекулами) разных сортов.

Сплавы металлов, имеющие большое техническое значение, зачастую представляют собой твердые растворы. Растворением небольшого количества примеси можно резко изменить свойства металла. Яркой иллюстрацией этого является получение одного из наиболее распространенных в технике материалов - стали, представляющей собой твердый раствор малых количеств углерода - порядка 0,5 весового процента (один атом углерода на 40 атомов железа) - в железе, причем атомы углерода беспорядочно внедрены между атомами железа.

В железе растворяется лишь небольшое число атомов углерода. Однако некоторые твердые растворы образуются при смешении веществ в любых пропорциях. Примером может служить сплав золото - медь. Кристаллы золота и меди имеют решетку одинакового типа - кубическую гранецентрированную. Такую же решетку имеет сплав меди с золотом. Представление о структуре сплава со все увеличивающейся долей меди мы получим, если будем мысленно удалять из решетки атомы золота и заменять их атомами меди. При этом замена происходит беспорядочно, атомы меди распределяются в общем как попало по узлам решетки. Сплавы меди с золотом можно назвать растворами замещения, а сталь является раствором иного типа - раствором внедрения.

В подавляющем же большинстве случаев твердых растворов не возникает, и, как говорилось выше, после застывания мы можем увидеть в микроскоп, что вещество состоит из смеси мелких кристалликов обоих веществ.

Как замерзают растворы

Если охладить раствор какой-либо соли в воде, то обнаружится, что температура замерзания понизилась. Нуль градусов пройден, а затвердевание не происходит. Только при температуре на несколько градусов ниже нуля в жидкости появятся кристаллики. Это кристаллики чистого льда, в твердом льде соль не растворяется.

Температура замерзания зависит от концентрации раствора. Увеличивая концентрацию раствора, мы будем уменьшать температуру кристаллизации. Самую низкую температуру замерзания имеет насыщенный раствор. Понижение температуры замерзания раствора совсем не малое: так, насыщенный раствор поваренной соли в воде замерзнет при - 21 °С. При помощи других солей можно добиться еще большего понижения температуры; хлористый кальций, например, позволяет довести температуру затвердевания раствора до -55°С.

Рассмотрим теперь, как идет процесс замерзания. После того как из раствора выпадут первые кристаллики льда, крепость раствора увеличится. Теперь относительное число чужих молекул возрастет, помехи процессу кристаллизации воды также увеличатся, и температура замерзания упадет. Если не понижать температуру далее, то кристаллизация остановится.

При дальнейшем понижении температуры кристаллики воды (растворителя) продолжают выделяться. Наконец, раствор становится насыщенным. Дальнейшее обогащение раствора растворенным веществом становится невозможным, и раствор застывает сразу, причем если рассмотреть в микроскоп замерзшую смесь, то можно увидеть, что она состоит из кристалликов льда и кристалликов соли.

Таким образом, раствор замерзает не так, как простая жидкость. Процесс замерзания растягивается на большой температурный интервал.

Что получится, если посыпать какую-нибудь обледеневшую поверхность солью? Ответ па вопрос хорошо известен дворникам: как только соль придет в соприкосновение со льдом, лед начнет таять. Чтобы явление имело место, нужно, конечно, чтобы температура замерзания насыщенного раствора соли была ниже температуры воздуха. Если это условие выполнено, то смесь лед - соль находится в чужой области состояния, а именно в области устойчивого существования раствора. Поэтому смесь льда с солью и будет превращаться в раствор, т. е. лед будет плавиться, а соль растворяться в образующейся воде. В конце концов либо весь лед растает, либо образуется раствор такой концентрации, температура замерзания которого равна температуре среды.

Площадь дворика в 100 м2 покрыта ледяной коркой в 1 см - это уже не мало льда, около 1 т. Подсчитаем, сколько соли нужно для очистки двора, если температура -3°С. Такой температурой кристаллизации (таяния) обладает раствор соли с концентрацией 45 г/л. Примерно 1 л воды соответствует 1 кг льда. Значит, для таяния 1 т льда при -3°С нужно 45 кг соли. Практически пользуются гораздо меньшими количествами, так как не добиваются полного таяния всего льда.

При смешении льда с солью лед плавится, а соль растворяется в воде. Но на плавление нужно тепло, и лед забирает его у своего окружения. Таким образом, добавление соли ко льду приводит к понижению температуры.

Мы привыкли сейчас покупать фабричное мороженое. Раньше мороженое готовили дома, и при этом роль холодильника играла смесь льда с солью.

Кипение растворов

Явление кипения растворов имеет много общего с явлением замерзания.

Наличие растворенного вещества затрудняет кристаллизацию. По тем же самым причинам растворенное вещество затрудняет и кипение. В обоих случаях чужие молекулы как бы борются за сохранение как можно более разбавленного раствора. Иными словами, чужие молекулы стабилизируют состояние основного вещества (т.е. способствуют его существованию), которое может их растворить.

Поэтому чужие молекулы мешают жидкости кристаллизоваться, а значит, понижают температуру кристаллизации. Точно так же чужие молекулы мешают жидкости кипеть, а значит, повышают ее температуру кипения.

Любопытно, что до известных пределов концентрации (для не очень крепких растворов) как понижение температуры кристаллизации раствора, так и повышение температуры кипения нисколько не зависят от свойств растворенного вещества, а определяются лишь количеством его молекул. Это интересное обстоятельство используется для определения молекулярной массы растворяемого вещества. Делается это при помощи замечательной формулы (мы не можем здесь привести ее), которая связывает изменение температуры замерзания или кипения с количеством молекул в единице объема раствора (и с теплотой плавления или кипения).

Температура кипения воды повышается раза в три меньше, чем понижается температура ее замерзания. Так, морская вода, содержащая примерно 3,5 % солей, имеет точку кипения 100,6°С,; в то время как температура ее замерзания понижается на 2°С.

Если одна жидкость кипит при более высокой температуре, чем другая, то (при той же температуре) упругость ее пара меньше. Значит,- упругость пара раствора меньше упругости пара чистого растворителя.

О различии можно судить по следующим цифрам: упругость водяного пара при 20°С равна 17,5 мм рт. ст., упругость пара насыщенного раствора поваренной соли при той же температуре - 13,2 мм рт. ст.

Пар с упругостью 15 мм рт. ст., ненасыщенный для воды, будет пересыщен для насыщенного раствора соли. В присутствии такого раствора пар начнет конденсироваться и переходить в раствор. Разумеется, забирать водяной пар из воздуха будет не только раствор соли, но и соль в порошке. Ведь первая же капелька воды, выпавшая на соль, растворит ее и создаст насыщенный раствор.

Всасывание солью водяного пара из воздуха приводит к тому, что соль становится сырой. Это хорошо знакомо хозяйкам и доставляет им огорчения. Но это явление понижения упругости пара над раствором приносит и пользу: оно используется для сушки воздуха в лабораторной практике. Воздух пропускают через хлористый кальций, который является рекордсменом по забиранию влаги из воздуха. Если у насыщенного раствора поваренной соли упругость пара 13,2 мм рт. ст., то у хлористого кальция она 5,6 мм рт. ст. До такого значения упадет упругость водяного пара при пропускании его через достаточное количество хлористого кальция (1 кг которого "вмещает" в себя примерно 1 кг воды). Это ничтожная влажность, и воздух может считаться сухим.