Мееровиц: Я могу себе представить абсолютно смертельный патоген широкого спектра поражения — патоген, атакующий хлоропласты. Хлоропласты есть у самых разных растений. Они играют ключевую роль в фотосинтезе [процесс, в ходе которого растение поглощает солнечный свет, атмосферную двуокись углерода, а также влагу из почвы и производит необходимые для своего роста углеводы. — К. Т.]. Без хлоропластов растение погибнет. А теперь представьте, что где-то, например в океане, развивается новый патоген, атакующий хлоропласты. Он может уничтожить все океанские растения и перекинуться на сушу. Земля превратится в пустыню. Такое возможно, хотя и маловероятно. Так или иначе, этот вариант подходит для мира Купера.

Все эти «фантазии на тему» дают понять, что за кошмары могут мешать биологу спать по ночам. Главная проблема человечества в «Интерстеллар» — заболевание растений широкого спектра поражения, которое неистовствует по всей планете. Но у профессора Брэнда есть еще одна причина для беспокойства: на Земле заканчивается кислород, и людям скоро нечем будет дышать.

Интерстеллар - _97.jpg

Задыхаясь без кислорода

Интерстеллар - _30.jpg

В начале фильма профессор Брэнд говорит Куперу: «Земная атмосфера на 80 процентов состоит из азота. Мы не можем дышать азотом, а патоген может. И пока он распространяется, кислорода в нашем воздухе будет все меньше и меньше. Последние люди, пережившие голод, будут первыми умершими от удушья. Поколение твоей дочери станет последним на Земле».

Есть ли научные обоснования для заявления профессора? Поставленный вопрос находится на пересечении двух научных дисциплин — биологии и геофизики. Поэтому я обсудил его с биологами, особенно с Эллиотом Мееровицем, во время нашего обеда, а также с двумя геофизиками, профессорами Калтеха Джеральдом Вассербургом (эксперт в области происхождения Земли, Луны и Солнечной системы) и Яком Янгом (специалист по физике и химии земной атмосферы, а также атмосфер других планет). И вот что я узнал от них, а также из научных трудов, к которым они меня отослали.

Образование и исчезновение пригодного для дыхания кислорода

Кислород, которым мы дышим, — это O2: молекула из двух атомов кислорода, связанных парой электронов. На Земле немало кислорода и в других формах: в составе диоксида углерода, воды, минералов земной коры и т. д. и т. п. Однако такой кислород непригоден для наших тел, если только какой-нибудь организм не высвободит его и не преобразует в O2.

О2 исчезает из атмосферы в результате дыхания, горения и гниения. Когда мы вдыхаем О2, наши органы соединяют его с углеродом, образуя двуокись углерода СО246. При этом высвобождается много энергии, которую наши тела используют. При горении древесины огонь быстро соединяет атмосферный О2 с древесным углеродом, образуя СО2, и эта реакция порождает тепло, которое поддерживает горение. Когда в лесной подстилке разлагаются мертвые растения, их углерод медленно соединяется с атмосферным О2, также выделяя СО2 и тепло.

Атмосферный О2 возникает главным образом благодаря фотосинтезу: хлоропласты в растении47 (см. главу 11) используют энергию солнечного света для расщепления СО2 на С и О2. Затем О2 высвобождается в атмосферу, а углерод растение соединяет с водородом и кислородом из воды, получая углеводы, необходимые ему для роста.

Нехватка О

2

, избыток СО

2

Предположим, эволюция породила патоген, уничтожающий хлоропласты, как в фантазии Эллиота Мееровица из конца предыдущей главы. Фотосинтез постепенно, по мере вымирания растений, прекращается. О2 больше не образуется, но продолжает разрушаться из-за дыхания, горения и гниения — в основном гниения. Однако, к счастью для выживших людей, на Земле не хватит гниющих растений, чтобы поглотить весь О2.

Основная часть того, что может сгнить, сгниет в течение тридцати лет, и на это уйдет всего лишь около одного процента О2; оставшегося с лихвой хватило бы и детям, и внукам Купера (лишь бы им было что есть).

Однако этот один процент атмосферного О2 будет преобразован в двуокись углерода, и в результате СО2 составит 0,2 процента атмосферы. Учитывая, что львиная доля атмосферы приходится на азот, этого количества СО2 достаточно, для того чтобы особо чувствительным к составу воздуха людям стало трудно дышать и, возможно, для того чтобы температура Земли повысилась (из-за парникового эффекта) примерно на 10 градусов Цельсия. Мягко говоря, неприятная перспектива!

Чтобы затруднить дыхание и вызвать сонливость у всех людей, в СО2 должно преобразоваться в десять раз больше атмосферного О2, а чтобы отравить диоксидом углерода практически все человечество — еще в пять раз больше, то есть всего в 50. Ума не приложу, как бы такое могло случиться.

Так что же, профессор Брэнд неправ? (Даже физики-теоретики делают ошибки… О да, в особенности физики-теоретики! Уж я-то знаю, о чем говорю.) Ошибка возможна, но все же профессор может быть прав, и чтобы объяснить почему, нужно упомянуть о серьезных проблемах океанского дна, вeдомых геофизикам.

Так же как и на суше, на дне океана есть неперегнившая органическая материя. Геофизики оценивают ее количество в одну двадцатую часть от земной органики. Если они обсчитались и этой неперегнившей органики в океанах в 50 раз больше, чем на суше, и если найти способ быстро вытащить ее на поверхность, то из-за ее гниения с образованием СО2 все люди на планете начнут задыхаться от нехватки кислорода и умирать от отравления СО2.

Раз за много тысяч лет нестабильные океанские воды перемешиваются — вода с поверхности опускается на дно, а вода со дна поднимается наверх. Не исключено, что во времена Купера произойдет настолько бурное перемешивание, что поднимающиеся водные пласты вынесут наверх большую часть донной органики. При контакте с атмосферой эта органика начнет гнить, преобразуя атмосферный О2 в смертельное количество СО2.

Да, это возможно. Но крайне маловероятно по двум причинам: во-первых, очень сомнительно, что количество неперегнившей органики на океанском дне настолько превышает прогнозы геофизиков, а во-вторых, крайне мала вероятность настолько бурного перемешивания океана48.

Как бы то ни было, Земля в «Интерстеллар» умирает, и человечеству нужен новый дом. Солнечная система, за исключением Земли, непригодна для жизни, так что искать приходится за ее пределами.

Интерстеллар - _98.jpg

Межзвездный перелет

При первой встрече профессор Брэнд рассказывает Куперу об экспедициях программы «Лазарь», призванных найти человечеству новый дом. Купер отвечает: «В Солнечной системе нет пригодных для жизни планет, а до ближайшей звезды тысяча лет пути. Это, мягко говоря, бессмысленно. Так куда же вы их отправили, профессор?»

Почему это бессмысленно (если под рукой нет червоточины), ясно, если задуматься, сколь велики расстояния до ближайших звезд (рис. 13.1).

Интерстеллар - _99.jpg

Рис. 13.1. Все звезды в пределах 12 световых лет от Земли. Солнце, проксима Центавра и тау Кита обведены кружками — желтым, фиолетовым и красным соответственно (Слегка измененная мною карта, взятая у Ричарда Пауэлла, atlasoftheuniverse.com.)

Расстояния до ближайших звезд