«Девять глав» — важнейший труд китайской математики. Сейчас почти невозможно вычленить оригинал из массы позднейших комментариев. Комментатор третьего века нашей эры Лю Хуэй заявляет, что в его время работа была в значительной степени переписана, был включен новый материал и выброшены некоторые ненужные разделы. Самая ранняя сохранившаяся версия текста датируется тринадцатым веком, но это только часть книги; наиболее полный текст относится к восемнадцатому столетию. Это очень похоже на нехватку оригинальных греческих текстов, хотя в данном случае промежуток между повторами и оригиналами, которые, как утверждается, он отражает, намного длиннее. «Девять глав» содержат 246 задач. Каждый раздел начинается с заявленной задачи, после чего приводится числовой ответ и метод, позволяющий получить решение. Не приводятся никакие логические объяснения или доказательства. Большая часть книги состоит из практических вычислительных задач, вроде распределения земли, разделения товаров и управления крупномасштабными строительными работами. В данном случае мы рассмотрим методы извлечения квадратных корней и решения уравнений.
Вычисления проводились путем выкладывания счетных палочек на счетной доске. Иногда счетная доска выполнялась в виде специальной сетки, но в некоторых текстах упоминается, что для подсчетов могла использоваться любая поверхность. Главное — правильно выложить палочки во время вычисления, что позволяет возобновлять прерванное вычисление с того места, где оно было прервано, что особенно важно при длительных расчетах. Ответы записывались сразу же после того, как они появлялись на счетной доске. Получающееся изображение числа палочками по своему характеру относится к десятичной системе счисления, но цифры с 1 до 9 строятся при помощи сложения — вертикальные палочки обозначали каждую единицу, а горизонтальная палочка обозначала 5. В некоторых источниках приводятся иллюстрации, на которых направление палочек меняется, но палочка, обозначавшая 5, всегда была перпендикулярна единицам — это, несомненно, визуально облегчало процесс счета и ускоряло вычисления. Использование специального символа для 5 перенесено на абаку, которая, похоже, не стала общепринятым инструментом счета вплоть до шестнадцатого века. Как и вавилоняне, китайцы, по-видимому, не имели особого символа для обозначения ноля. При раскладывании счетных палочек, там, где должен быть ноль, оставляли пустое место, но это, похоже, не фиксировалось при записи ответа, и только из контекста можно было понять, был ли ответ, скажем, 18, 108 или 1800. Есть письменное свидетельство — китайский перевод индийского текста, — что в восьмом веке в качестве ноля использовалась точка. Круглый ноль появился намного позже, в тринадцатом веке, равно как и «квадратный» ноль, легко получающийся при работе со счетными палочками.
Извлечение квадратного и кубического корней начинается с определения порядка величины корня путем осмотра, и затем по очереди вычисляется каждая цифра. В примере из «Девяти глав» вычисляется квадратный корень из 71 824. Легко понять, что значение квадратного корня находится между 200 и 300, и потому ясно, что это число из трех знаков — abc — где а равно 2. Таким образом, задача заключается в том, чтобы вычислить значения b и с. Объяснение процедуры вычисления, согласно Лю Хуэю, исходит из геометрии. Квадрат анализируется специфическим способом. Установив, что корень больше 200, мы удаляем из схемы квадрат 200 х 200, оставляя L-образную форму, называемую «гномоном». Затем мы находим максимальное значение десятков, которое вписывается в гномон. Это число 60, и в результате возникает следующий L-образный гномон. Процесс продолжается до тех пор, пока не будет получено требуемое решение. Если ответ — не целое число, процесс или продолжается до получения необходимого количества десятичных значений, или остаток дается в виде дроби. Та же самая техника используется для вычисления кубического корня — куб расчленяется аналогичным образом.
Эта геометрическая техника эквивалентна использованию биномиального разложения, числовые коэффициенты которого могут быть выражены тем, что сейчас известно как треугольник Паскаля. Этот алгебраический метод активно применялся в одиннадцатом столетии и, возможно, еще ранее, позволяя китайцам вычислить корень любой n-й степени, какой им было нужно. И снова неясно, был ли треугольник Паскаля получен из индийских источников или открыт самостоятельно. Каждый шаг извлечения квадратного корня требует решения квадратного уравнения. Аналогично извлечение корней более высокого порядка, например кубического корня, требует решения уравнений более высокого порядка, или полиномиалов. Соответственно подобный метод мог использоваться для того, чтобы решить любой полиномиал без применения геометрической структуры гномонов. Как и в других культурах, одного корня было всегда достаточно, и мы не можем сказать, знали ли китайцы о том, что полиномиал мог иметь несколько решений. Уравнения не записывались в терминах переменной воде «х», они выражались только в терминах числовых коэффициентов, которые выкладывались на вычислительной доске. Похоже, китайцев не интересовало, конечно или бесконечно решение, — алгоритм был одинаково эффективен в обоих случаях, и вычисление заканчивалось в тот момент, когда достигалась требуемая точность.
В «Девять глав» также входят задачи, представляющие собой системы линейных уравнений с более чем одним неизвестным. Лю Хуэй заявляет в своем комментарии, что общий метод трудно объяснить без обращения к конкретному примеру. В этом методе коэффициенты системы уравнений представлены счетными палочками, разложенными в виде матрицы. Затем с числами производятся определенные манипуляции, чтобы устранить некоторые из коэффициентов, оставляя явные числовые решения. Это очень похоже на современный метод, известный как Гауссово исключение (по имени математика Карла Фридриха Гаусса), но китайцы не развили идею до вычисления детерминанта матрицы, так что, возможно, более корректно расценивать конфигурацию счетных палочек не как матрицу, а как таблицу.
Есть также важная работа по неопределенным уравнениям, где существует несколько возможных ответов — иногда бесконечное их множество. В книге представлены два типа задач: первая — задача на остаток, вторая известна как «задача о сотне домашних птиц». Задача о сотне домашних птиц в самом разном виде встречается в самых разных уголках средневекового мира — в европейских, арабских и индийских текстах. В «Десяти канонах» сказано, что петушки стоят 5 цянь, курицы — 3 цянь, а 3 цыпленка — 1 цянь. Если 100 птиц куплены за 100 цянь, сколько каких птиц было куплено? Приводятся три решения. Одно из них — 4 петушка, 18 куриц и 78 цыплят. (Есть решение с отсутствующим элементом, когда можно купить 25 куриц и 75 цыплят, но ни одного петушка.) Эти ответы правильные, но объяснение, похоже, неверное.
При описании задачи на остаток приводится и результат, и общий метод, но снова без объяснения. В этой задаче, согласно описанию в «Девяти главах», приобретается неизвестное число предметов. Если посчитать их по три, остается две штуки, если посчитать их по пять штук, остается три, а если считать их по семь штук, остается два. Цель состоит в том, чтобы найти число купленных предметов. Решение скорее методологическое, чем объяснительное. В целом для решения задачи требуется найти наибольший общий сомножитель для чисел 3, 5 и 7. Странно, но в следующий раз эта же задача упоминается только в тринадцатом веке в работе Цинь Цзюшао.
Цинь Цзюшао родился в городе Аньюэ (ныне в провинции Сычуань). Его отец занимал множество различных административных постов, включая должность заместителя директора Дворцовой библиотеки. Цинь Цзюшао изучал астрономию в столице, Ханьчжоу, но в 1234 году вступил в армию, чтобы противостоять монгольским захватчикам. Это были десять тяжелых лет. В 1244 году он вернулся и стал «придворным чиновником с широкими полномочиями» (это высокий титул) в префектуре Цзянькан (ныне Нанкин), однако в том же году Цинь Цзюшао удалился от службы на три года, чтобы оплакать смерть матери. Вероятно, именно в этот период он составил свой труд «Шу шу цзю чжан» («Девять книг по математике»), структура которого напоминает «Десять канонов», но несколько сложнее.