Такая радиостанция есть у молекулы и у всех атомных частиц. Протон, нейтрон, электрон обладают разными электрическими и магнитными свойствами. Правда, магнитные моменты частиц хаотически направлены во все стороны. Но ученые научились наводить в этом движении порядок. Если весь этот хаос поместить в магнитное поле, то нестройный «шум», который издают частицы, превратится в четкую систему сигналов. Атомы элементов периодической системы состоят из различного числа частиц. У каждого элемента — свой голос, ибо свойства ядер атомов разных элементов индивидуальны. Мы не спутаем в эфире позывные Москвы с позывными Лондона или Варшавы. Так и в наведенном магнитном поле. Там звучат разные позывные, по которым мы узнаем, с кем имеем дело в эфире. Сигналы, передаваемые радиостанцией молекулы, записываются «на пленку». Зеленый карандаш электронного луча рисует их на экране осциллографа — прибора для записи электронных колебаний.
Экспериментаторы внимательно изучают эти сигналы. Молекула… Атом… Свободный радикал…
Электронный парамагнитный резонанс открывает головокружительные возможности для исследования биофизических и биохимических процессов. Уже первый поиск, произведенный с помощью ключа ЭПР, показал, что во всех тканях содержатся свободные радикалы. Жизнь их в клетке длится иной раз тысячные доли секунды, но в эти микромгновения и решается иной раз судьба того или иного процесса. С помощью ЭПР в ряде ферментных реакций были обнаружены радикалы, помогающие понять ход биохимических реакций в живом.
Мы знаем, например, что ионизирующее излучение нарушает обычное течение жизни. Оно расстраивает обмен веществ, вызывает лучевую болезнь, стимулирует развитие рака, вторгается в механизм наследственности. При радиационном облучении в живых тканях возникает много свободных радикалов. Изучить их природу — значит понять многое в характере нарушения молекулярной структуры биологических объектов. Понять и наметить пути защиты против радиации.
Другой пример. Курение — вредно. Это знают все. Но почему именно? Никотин? Отчасти. Папиросный дым обладает токсичностью благодаря свободным радикалам. Когда «замороженная» струя табачного дыма была исследована методом ЭПР, в ней было обнаружено много свободных радикалов высокой активности. Они-то и приносят вред организму.
Средства и методы электроники позволяют с достаточной точностью установить и другие закономерности живого. Тончайшие детали, ускользавшие прежде из поля зрения исследователя, стали достоянием экспериментатора. Стало возможным наблюдать и измерять чрезвычайно малые измерения энергии в клетке. Электроника позволяет изучать очень быстро и очень медленно текущие процессы.
Новые возможности открывает телевизионный микроскоп. У его электронного собрата при всех достоинствах есть один существенный недостаток. В электронном микроскопе мы видим уже мертвую клетку, мертвый орган. Электронный луч убивает живое. А ведь именно жизнь — главный объект нашего изучения. Остановив ее, мы выхватываем для себя какие-то отдельные ее моменты, уже застывшие на экране микроскопа. А значит, что-то упускаем.
Телевизионный микроскоп позволяет подсмотреть некоторые процессы жизни. Контрастность и яркость изображения в этом приборе можно регулировать электрическим путем. Поэтому отпадает необходимость окрашивать объект исследования. Окрашивание тоже нарушает нормальную жизнедеятельность препаратов, искажая в какой-то мере данные наблюдений.
Телемикроскоп хорош еще и тем, что за его экраном могут наблюдать сразу несколько исследователей. И у каждого свой взгляд, свое понимание процесса. Один обмен мнениями на ходу, не прерывая опыта, может дать больше, чем десять наблюдений порознь.
Электроника создает предпосылки для автоматизации биологического анализа. Преимущества ее очевидны. Разумеется, увеличится скорость проведения анализа. Разумеется, автомат облегчит утомительный труд лаборанта и экспериментатора. Главное: автомат обеспечит высокую, ранее недоступную точность. Вполне вероятно, что повышение точности анализа позволит открыть такие явления и закономерности в организмах, которые имеют место в действительности, но пока ускользают из-под взора наблюдателя из-за погрешностей и неточностей анализа.
Биологу нужны автоматы, которые следили бы за процессами, происходящими в суспензиях живых культур, которые создавали бы в них определенные условия. Чтобы составить объективно верную картину течения микробиологического процесса, нужно проанализировать характерные его показатели на протяжении всего экспериментального или технологического цикла. Нужно параллельно следить сразу за несколькими параметрами — температурой, концентрацией водородных ионов, кислотно-восстановительным потенциалом среды и т. п. Такую работу точнее и аккуратнее выполняют, конечно, автоматы.
На IV съезде Венгерского микробиологического общества был продемонстрирован подобный прибор. Он регулирует ферментационный процесс. Прибор позволяет вести сразу несколько наблюдений: производить оценку РП (редокс-потенциала), соотношения углерода — азота, подсчитывать расход кислорода с точностью до 0,1 процента, количество ростовых факторов и витаминов с точностью до 0,5 процента и определять температуру.
Электронную модель, воспроизводящую ход микробиологических процессов, создали ученые Московского университета. Перед машиной ставят вопрос: какой режим выращивания больше всего соответствует заданным целям? Полученные по ее совету экспериментальные данные вновь закладываются в машину, чтобы в следующий раз она могла ответить более точно и развернуто. Таким образом, в течение одного часа с помощью электронной модели можно испытать такое количество различных вариантов, на экспериментальную проверку которых потребовался бы год работы.
В недалеком будущем моделирование войдет в повседневную жизнь ученых. С его помощью будут проводить анализ физиологических функций микробной клетки, исследовать кинетику ростовых и биохимических процессов, управлять микробиологическим синтезом в промышленном масштабе.
Технический прогресс все теснее переплетается с прогрессом в биологии. Влияние на нее методов точных наук все ощутимее и плодотворнее. Не следует, однако, думать, что биология превращается в отрасль физики и химии. Напротив. Использование данных точных наук для объяснения механических, электрических или химических свойств живых организмов лишний раз подчеркивает их биологические свойства. Явления, происходящие в живом, как бы они хорошо ни описывались физически, происходят не в мертвых механизмах, а в саморегулирующихся и самовоспитывающихся сущностях, созданных в результате длительной эволюции.
Самое сложное — выявить собственно биологические закономерности жизни. Мы видели, как сложно, кропотливо, целеустремленно шаг за шагом, штрих за штрихом воссоздается общая картина.
Работа, которую ведут биологи, напоминает чем-то работу кинематографистов. Создается многосерийный панорамный фильм. Каждая серия — два часа. Это 7200 секунд, по 24 кадра в каждой. Итого — 102 800 кадров в серии. И над каждым кадром надо немало потрудиться. Надо найти место для съемок, нарисовать декорации, подготовить актеров, звук, массовку, прорепетировать с главными исполнителями, сделать пробы и тысячи других дел. Пройдет немало времени, пока эти 102 800 кадров промелькнут на экране со скоростью 24 кадра в секунду, превратившись из разрозненных киноснимков в единую картину.
Экспериментальная биология чем-то походит на съемочный коллектив. Есть, конечно, между ними известная разница. Но так же, кадр за кадром, кропотливо готовится съемка. Эпизод за эпизодом запечатлевается на «кинопленке» науки. Скорость, с какой проходят перед взором научного оператора явления жизни, много выше. Некоторые эпизоды длятся миллионные доли секунды. А их тоже надо запечатлеть. Надо зафиксировать детали, которые невидимы ни на телеэкране, ни в ультрафиолетовых, ни в инфракрасных лучах. Далеко не все еще попало в объектив наблюдателя. Тайнопись живого. Так называется будущий фильм. Еще не отсняты миллионы кадров. (Я не случайно привожу шестизначную цифру — на планете 2 миллиона научных работников, и почти каждый вносит свою лепту в подготовку общей картины.)