Роль диаграммы Герцшпрунга-Рассела трудно переоценить. По многим причинам её вполне можно назвать самым важным графиком во всей астрономии. Существуют какие-то важные причины, по которым большинство звёзд - это либо звёзды главной последовательности, либо красные гиганты, либо белые карлики. Разумеется, существует несколько исключений, но факт остаётся фактом - большинство звёзд миллиарды лет своей биографии остаются членами одного из этих трёх основных типов.

В начале главы мы отметили, что звёзды должны эволюционировать. Это означает, что на протяжении всего времени жизни звезда должна менять свою светимость и поверхностную температуру. Иными словами, точка, изображающая звезду, должна перемещаться по диаграмме Герцшпрунга-Рассела. Поэтому понять, как звёзды меняют своё положение на диаграмме Герцшпрунга-Рассела, - значит узнать, как звёзды рождаются, как они выглядят в «зрелые годы» и что с ними происходит, когда они «умирают».

Прежде чем приступить к решению проблемы жизненного цикла звёзд, астроному необходимо выяснить ещё одно обстоятельство: нужно узнать, сколько вещества содержится в звезде, т.е. чему равны массы звёзд.

Как это ни кажется странным, почти половина звёзд, наблюдаемых на небе, - это не одиночные звёзды, как наше Солнце. Обычно это пары звёзд, обращающихся вокруг общего центра масс (подобно тому, как Земля и Луна обращаются друг относительно друга). Такие системы (рис. 6.4) называются двойными звёздами. Двойные звёзды представляют большую важность для астрономов, поскольку, наблюдая движение компонентов в двойной системе, можно точно определить массы этих звёзд. Наблюдая, как две звезды движутся около общего центра масс, астроном может с помощью ньютоновской механики вычислить, какими массами обладают эти звёзды. Таким путём астрономия получает данные о количестве вещества, содержащегося в звёздах.

Космические рубежи теории относительности - _81.jpg

РИС. 6.4. Двойная звезда. Многие звёзды, которые мы видим на небе, на самом деле состоят из двух звёзд, очень близких друг к другу и обращающихся по орбитам вокруг общего центра масс.

Космические рубежи теории относительности - _82.jpg

РИС. 6.5. Соотношение масса-светимость. Массы и светимости звёзд главной последовательности связаны между собой так, как это видно из графика. Слабые звёзды облагают самыми малыми массами (1/10 массы Солнца или даже меньше), а наиболее яркие звёзды самые массивные (до 50 масс Солнца).

Данные об измерениях масс для многих двойных систем удобнее всего представить в форме графика (рис. 6.5). Оказывается, самые слабые звёзды вместе с тем и наименее массивные. Обычно такие звёзды имеют раз в десять меньшие массы, чем Солнце. С другой стороны, звёзды с наибольшей светимостью - самые массивные; известны звёзды с массами в 40 и даже 50 солнечных. Эта связь между массой и светимостью для звёзд главной последовательности называется соотношением масса-светимость.

Зная светимости, температуры и массы ряда звёзд, астрономы могут поставить перед астрофизиками задачу - выяснить, что происходит в звёздах. Почему звёзды группируются в три основные типа на диаграмме Герцшпрунга-Рассела? Почему самые массивные звёзды одновременно обладают наибольшими светимостями? Как связаны красные гиганты со звёздами главной последовательности? Имеют ли красные гиганты какое-либо отношение к белым карликам? Или они связаны с какими-то другими объектами? Астрофизик должен воспользоваться законами физики, использовать методы математики, учесть результаты астрономических наблюдений и ввести все эти данные в хорошую ЭВМ. Через несколько минут (иногда - часов) ЭВМ выразит на языке чисел то, что природа реализует в небесах за миллиарды лет. Полученный результат - это увлекательный рассказ об эволюции звёзд.

Наблюдая небо, астрономы часто обнаруживают огромные облака газа. Прекрасный пример - туманность Ориона (иногда её называют «М 42»), которую с трудом можно рассмотреть невооруженным глазом близ средней звезды в «мече» Ориона. Прекрасная фотография этой туманности приведена на рис. 6.6. Обратите внимание на несколько темных участков в этой туманности. Это не «дыры» в ней, как думали ещё в XIX в., а холодные темные облака пыли, заслоняющие от нас светящиеся скопления газа, находящиеся позади.

Космические рубежи теории относительности - _83.jpg

РИС. 6.6. Туманность Ориона. Именно здесь, в гигантских облаках холодного газа (например, в туманности Ориона, изображенной на этом снимке), рождаются звёзды. (Ликская обсерватория.)

Представим себе одно из этих холодных и темных облаков газа и пыли. Можно ожидать, что оно не вполне однородно, а содержит сгущения, в которых газ несколько плотнее, чем в соседних частях облака. Поскольку такое сгущение содержит больше вещества, чем его окружение, оно создаёт и немного более сильное поле тяготения; значит, оно будет притягивать окружающее его вещество. В результате сгущение будет становиться всё массивнее и порождать всё более сильное гравитационное поле, в свою очередь притягивающее ещё больше вещества. Путём такой аккреции сгущение растет как по размерам, так и по массе, пока в нём не скопится, наконец, огромное количество вещества - во много масс Солнца, - распределённое в объёме, многократно превышающем размеры Солнечной системы.

Подробные расчёты астрофизиков показывают, что такая протозвезда неустойчива. Дело в том, что отсутствует какое-либо сопротивление огромному весу миллиардов и миллиардов тонн газа. Поэтому протозвезда начинает сжиматься. По мере того как вещество этого огромного газового шара занимает всё меньший и меньший объём, начинают резко возрастать давление и плотность внутри протозвезды. Когда вы потираете руки, ваши ладони нагреваются. По той же, по сути дела, причине температура вблизи центра протозвезды при её сжатии повышается всё сильнее и сильнее. Наконец, когда температура в центре достигает около 10 миллионов градусов, ядра атомов водорода начинают сталкиваться с такой силой, что они сливаются, образуя ядра атомов гелия. При такой термоядерной реакции, при которой водород превращается в гелий, выделяется гигантское количество энергии. Это тот же процесс, который происходит в водородной бомбе. Мощный процесс выделения энергии оказывается способным остановить сжатие. Вот так родилась звезда!

В процессе сжатия, протозвезды точка, изображающая её на диаграмме Герцшпрунга-Рассела, очень быстро перемещается по диаграмме, поскольку быстро изменяются условия на поверхности протозвезды. Сначала по мере уменьшения размеров протозвезды её светимость падает. Затем, непосредственно перед «зажиганием» термоядерной реакции, поверхностная температура протозвезды быстро возрастает. Согласно расчётам астрофизиков, эта точка - звезда на диаграмме Герцшпрунга-Рассела останавливается, когда в сердцевине звезды начинается «сжигание» водорода, причем эта точка остановки соответствует главной последовательности. На рис. 6.7 вы видите прекрасный пример молодого звёздного скопления.

Космические рубежи теории относительности - _84.jpg

РИС. 6.7. Плеяды. Группа очень молодых звёзд. Термоядерная реакция включилась в недрах этих звёзд недавно - какой-нибудь миллиард лет назад. (Ликская обсерватория.)

Таким путём астрофизикам удалось вскрыть истинный смысл главной последовательности. В центральной области каждой звезды главной последовательности происходит «сжигание» водорода. Такое «сжигание» в массивных звёздах происходит с огромной скоростью. Поэтому более массивные звёзды являются и самыми яркими. У звёзд малой массы «сжигание» водорода происходит намного медленнее, и поэтому менее массивные звёзды оказываются самыми слабыми.

Солнце - типичный пример звезды главной последовательности, и в нём за каждую секунду превращается в гелий 600 миллионов тонн водорода. Это могло бы показаться невероятно быстрым темпом, если бы в центральных областях Солнца не было так много водорода, что оно способно выдерживать такой темп в течение по меньшей мере десяти миллиардов лет. Всё это время точка, изображающая Солнце на диаграмме Герцшпрунга-Рассела, остаётся в средней части главной последовательности. За весь этот срок Солнце или другая звезда подобного типа изменится очень мало. Солнцу сейчас около 5 миллиардов лет, так что у нас есть в запасе по крайней мере ещё 5 миллиардов лет.