На диаграмме Пенроуза шварцшильдовской чёрной дыры (рис. 9.18) мы снова замечаем, что линии постоянного времени и линии постоянного расстояния ведут себя, по существу, так же, как и на диаграмме Крускала-Секереша. Горизонт событий сохраняет свой наклон в 45°, а сингулярности (как в прошлом, так и в будущем) остаются пространственноподобными. Обмен ролями между пространством и временем, как и прежде, происходит при пересечении горизонта событий. Однако теперь самые удалённые части обеих связанных с чёрной дырой Вселенных находятся у нас перед глазами. Все пять бесконечностей нашей Вселенной (I-, F-, I0, F+, I+ ) видны справа на диаграмме, а слева на ней же можно увидеть все пять бесконечностей другой Вселенной (I-, F-, I0, F+, I+ ).
Мы можем теперь перейти к заключительному упражнению с шварцшильдовской чёрной дырой - выяснить, что увидят отчаянно любознательные астрономы-камикадзе, падающие на чёрную дыру и пересекающие горизонт событий.
РИС. 9.19. Космический корабль. Два любознательных и отчаянно смелых астронома полетели на этом корабле к чёрной дыре. Обратите внимание на то, что у этого корабля нет ракетных двигателей, которые замедлили бы его свободное падение. Носовой иллюминатор смотрит на центр чёрной дыры, а кормовой иллюминатор - на внешнюю Вселенную.
Космический корабль этих астрономов изображен на рис. 9.19. Носовой иллюминатор всегда направлен прямо на сингулярность, а кормовой - в противоположную сторону, т. е. на нашу внешнюю Вселенную. Отметим, что у космического корабля теперь нет ракетных двигателей для замедления его падения. Начав движение с большой высоты над чёрной дырой, астрономы просто вертикально падают со всё увеличивающейся (по их измерениям) скоростью. Их мировая линия (рис. 9.20) проходит сначала через горизонт событий, а затем ведет в сингулярность. Так как их скорость всегда меньше скорости света, то мировая линия корабля на диаграмме Пенроуза должна быть временноподобной, т.е. повсюду обладать наклоном к вертикали менее 45°.
РИС. 9.20. Полёт «камикадзе». Диаграмма Пенроуза изображает мировую линию полёта астрономов к чёрной дыре, заканчивающегося их гибелью. В ходе полёта снимаются четыре пары фотографий. Первый снимок (А) сделан далеко от чёрной дыры. Второй снимок (Б) соответствует моменту, когда астрономы пересекали горизонт событий. Третий снимок (В) сделан между горизонтом событий и сингулярностью. Последняя фотография (Г) снята непосредственно перед попаданием в сингулярность.
РИС. 9.21.
Фото А. Далеко от чёрной дыры. С большого расстояния чёрная дыра выглядит как маленькое чёрное пятнышко в центре ноля зрения носового иллюминатора. Падающие в дыру астрономы наблюдают через кормовой иллюминатор неискаженный вил Вселенной, из которой они прилетели.
Фото Б. На горизонте событий. Благодаря эффекту аберрации изображение чёрной дыры сжато в сторону центра поля зрения носового иллюминатора. Астроном, ведущий наблюдение в кормовой иллюминатор, видит лишь ту Вселенную, из которой прибыл корабль.
Фото В. Между горизонтом событий и сингулярностью. Опустившись под горизонт событий, астроном, наблюдающий в носовой иллюминатор, может видеть другую Вселенную. Приходящий из области другой Вселенной свет заполняет центральную часть его поля зрения.
Фото Г. Непосредственно над сингулярностью. Когда астрономы приближаются к сингулярности, через носовой иллюминатор становится всё лучше видно другую Вселенную. Изображение же собственно чёрной дыры (имеющее вид кольца) становится всё тоньше и тоньше, быстро приближаясь к краю поля зрения носового иллюминатора.
Во время путешествия астрономы делают на разных этапах пути четыре пары фотографий - по одной из каждого иллюминатора. Первая пара (снимки А) сделана, когда они были ещё очень далеко от чёрной дыры. На рис. 9.21, А видно чёрную дыру как маленькое пятнышко в центре поля зрения носового иллюминатора Хотя в непосредственной близости от чёрной дыры вид неба искажен, его остальная часть выглядит совершенно обычно. По мере того как скорость падения астрономов на чёрную дыру возрастает, свет от объектов из удалённой Вселенной, наблюдаемый через кормовой иллюминатор, испытывает всё более и более сильное красное смещение.
Хотя, по утверждению удалённых наблюдателей, падение космического корабля замедляется до полной его остановки на горизонте событий, астрономы на самом космическом корабле ничего подобного не заметят. По их мнению, скорость корабля всё время возрастает и при пересечении горизонта событий она составляет заметную долю скорости света. Это существенно по той причине, что в результате падающие астрономы наблюдают явление аберрации света звёзд, очень похожее на рассмотренное нами в гл. 3 (см. рис. 3.9, 3.11). Вспомните, что при движении с околосветовой скоростью вы заметите сильные искажения картины неба. В частности, изображения небесных тел как бы собираются впереди движущегося наблюдателя. Вследствие этого эффекта изображение чёрной дыры концентрируется ближе к середине носового иллюминатора падающего космического корабля.
Картина, наблюдаемая падающими астрономами с горизонта событий, показана на рис. 9.21,Б. Этот и последующие рисунки построены на основании расчётов, проделанных Кэннингэмом в Калифорнийском технологическом институте в 1975 г. Если бы астрономы покоились, изображение чёрной дыры занимало бы всё поле зрения носового иллюминатора (рис. 8.15,Д). Но так как они движутся с большой скоростью, изображение сосредоточивается в середине носового иллюминатора. Его угловой поперечник примерно равен 80°. Вид неба рядом с чёрной дырой очень сильно искажен, а астроном, ведущий наблюдение через кормовой иллюминатор, видит лишь ту Вселенную, из которой они прилетели.
Для понимания того, что же будет видно, когда корабль будет находиться внутри горизонта событий, вернемся к диаграмме Пенроуза шварцшильдовской чёрной дыры (см. рис. 9.18 или 9.20). Вспомним, что идущие в чёрную дыру световые лучи имеют на этой диаграмме наклон 45°. Поэтому, оказавшись под горизонтом событий, астрономы смогут видеть и другую Вселенную. Лучи света из удалённых частей другой Вселенной (т.е. из её бесконечности F- в левой части диаграммы Пенроуза) смогут теперь дойти до астрономов. Как показано на рис. 9.21,В, в центре поля зрения носового иллюминатора космического корабля, находящегося между горизонтом событий и сингулярностью, видна другая Вселенная. Чёрная часть дыры представляется теперь в виде кольца, отделяющего изображение нашей Вселенной от изображения другой Вселенной. По мере приближения падающих наблюдателей к сингулярности чёрное кольцо становится всё тоньше, прижимаясь к самому краю поля зрения носового иллюминатора. Вид неба из точки прямо над сингулярностью показан на рис. 9.21,Г. В носовой иллюминатор становится всё лучше и лучше видно другую Вселенную, а прямо на сингулярности её вид целиком заполняет поле зрения носового иллюминатора. Астроном же, проводящий наблюдения через кормовой иллюминатор, видит на протяжении всего полёта лишь нашу внешнюю Вселенную, хотя её изображение становится всё более и более искаженным.