Риск и возможная опасность ГМО и их научная проверка

В определенном смысле любой сорт выступает в качестве важнейшего для человечества рентообразующего фактора, как бы «озвучивающего» в цене величину и качество урожая благодаря лучшему использованию преимуществ местных почвенно-климатических и погодных условий, соответствию требованиям, а нередко и «прихотям» рынка, отзывчивости на применение техногенных факторов, применению новейших достижений науки и пр. В то же время при рыночной системе ценообразования и существующих методиках сортоиспытания далеко не всегда «улавливаются» преимущества нового сорта или гибрида, связанные с обеспечением экологической безопасности, т.е. их пригодностью к природоохранным, в том числе беспестицидным, технологиям возделывания, способностью усваивать труднодоступные элементы питания, противостоять кислотности и засолению почвы, обогащать ее биологическим азотом, улучшать физико-химическое и фитосанитарное состояние и тд. То обстоятельство, что в условиях рыночной экономики цены на сельскохозяйственную продукцию практически не учитывают средоохранные, ресурсосберегающие, почвоулучшающие и многие другие важные в экологическом плане признаки и свойства новых сортов, следует рассматривать в качестве хотя и временного, но весьма негативного явления.

Далеко не всегда в цене «озвучивается» и содержание в урожае биологически ценных, в том числе незаменимых, веществ. Между тем проблемы здоровья, питания и ресурсов всегда взаимосвязаны, а качество пищи и лекарства справедливо считаются двумя сторонами одной и той же медали под названием здоровье. С учетом решающего значения сорта в определении показателей «качества пищи», а следовательно, и «качества жизни» людей рентообразующим свойствам сорта, связанным с содержанием биологически и технологически ценных веществ (углеводов, аминокислот, жиров, витаминов, минеральных солей и др.), вкусом, эстетичностью, безопасностью для здоровья (отсутствие нитритов и нитрозаминов, тяжелых металлов, радионуклидов, микотоксинов и пр.), в процессе селекции и возделывания растений необходимо уделять особое внимание. Так, энергетическая и протеиновая ценность кормовых культур и соответствующих сортов должна формироваться в строгом соответствии с технологиями их возделывания, транспортировки, хранения и переработки, а также условиями содержания животных, более того, даже с учетом особенностей производства той или иной животноводческой продукции.

Например, важную роль приобретает создание сортов клевера с высокой растворимостью протеина (разброс данного показателя по сортам — от 20 до 70%), что позволило бы приблизить эту культуру по питательной ценности к люцерне. Поэтому в селекционном процессе, так же как и при нормировании кормов, важно учитывать не только валовое содержание, но и все большее число составляющих их биологически ценных веществ, определяющих в конечном счете питательную ценность кормов по обменной энергии и перевариваемому протеину. В этой связи должны быть разработаны соответствующие коэффициенты биоконверсии не только для каждой кормовой культуры и сорта, вида животного и технологии его содержания, но и для определенного типа фитоценоза (лугового или полевого) и т.д.

Как уже отмечалось выше, одной из возможностей уменьшения загрязнения генотоксическими агентами окружающей среды в связи с химизацией сельского хозяйства является широкое использование ГМ растений. Но оно требует объективного анализа рисков распространения ГМО. При рассмотрении проблемы возможного влияния трансгенных растений на окружающую среду в основном обсуждаются 3 аспекта:

1. Сконструированные гены могут быть переданы с пыльцой близкородственным диким видам, и их гибридное потомство приобретет новые привнесенные свойства или способность конкурировать с другими растениями.

2. Трансгенные сельскохозяйственные растения могут стать сорняками для сельского хозяйства и вытеснить произрастающие рядом другие растения.

3. Трансгенные растения могут стать прямой угрозой для человека, домашних и диких животных (например, из-за их токсичности или аллергенноcти).

К настоящему времени выполнены экспериментальные исследования этих возможностей и получены следующие данные.

Проведена оценка трансгенного рапса по способности к инвазии с целью определения: станут ли гербицидустойчивые растения более склонными к распространению в естественных условиях. При изучении демографических параметров трансгенного и обычного рапса, выращивавшихся в различных местах и различных климатических условиях, получены данные прямого сравнения 3 различных генетических линий — контроль, канамицинустойчивая линия и гербицидустойчивая линия — Баста.

Несмотря на значительные колебания по выживанию семян (при их хранении в земле), росту растений и семенной продуктивности, не обнаружены данные, указывающие, что генетическая инженерия по канамицин- и гербицидустойчивости усилила инвазивные свойства рапса. В случаях, когда наблюдали значительные различия, например, по выживанию семян, трансгенные растения оказались менее стойкими по сравнению с обычными.

При изучении частоты переноса гена bar (устойчивости к гербициду Баста) трансгенным рапсом были засеяны окружности диаметром 9 м среди гектара обычных растений. Для улучшения перекрестного опыления в поле стояли ульи с пчелами. Семена собирали на расстоянии 1,3, 12 и 47 м от этих окружностей и в потомстве определяли наличие гибридных растений.

Частота перекрестного опыления составила на расстоянии 1м — 1,4%, 3 м — 0,4%, 12 м — 0,02% и 47 м — 0,00034% (3 гибрида на миллион растений).

Определение частоты перекрестного опыления между трансгенным картофелем S.nigrum и S.dulcamara показало, что когда трансгенные и контрольные растения выращивали в соседних рядах, то частота скрещивания между ними составляла 24%. При увеличении расстояния до 10 м она составляла 0,017%, а при 20 м гибридных растений не обнаружено.

Еще одним аспектом влияния трансгенных растений на окружающую среду является получение трансгенных растений с лучшей способностью использовать минеральные соединения, что, кроме усиления роста, будет также препятствовать смыву химикатов в фунтовые воды и попаданию в источники водопотребления.

Ген CHL1 арабидопсиса контролирует транспорт нитратов и влияет на их поглощение из почвы. Изолирован гомологичный ему ген OsNTI. У трансгенных растений арабидопсиса с геном CHL1 поглощение азота усиливалось. ДНК CHL1 и OsNTI была слита с промоторами Act1 и Ubi1, и эти конструкции были интродуцированы в растения риса. Среди трансгенных растений, подвергнутых анализу, растение со множественными инсерциями Ubi1-CHL1 характеризовалось типичным для растений с повышенным поглощением нитратов соотношением корневой массы к надземной.

Ген глюкуронидазы (GUS), изолированный из Escherichia coli, — один из наиболее широко используемых репортерных генов у трансгенных растений. Этот ген чаще всего используется для изучения экспрессии генов при его подстановке под промоторы соответствующих генов. Выпуск на рынок трансгенных сортов сельскохозяйственных растений, имеющих GUS ген в качестве репортерного, требует оценки биобезопасности этого гена.

GUS-активность обнаружена у многих видов бактерий и поэтому представлена в организмах беспозвоночных и позвоночных. В организмах позвоночных GUS-активность обязана попаданию энтеробактерии Escherichia coli, обитающей в кишечном тракте, в почве и фунтовых водах, поэтому дополнительная активность GUS, добавленная в экосистему за счет трансгенных растений, не изменит существующую ситуацию вовсе или изменит незначительно.

Нет оснований полагать, что трансгенные культуры, экспрессирующие GUS ген, будут иметь какие-либо преимущества перед другими культурами и будут сорняками или такими преимуществами станут обладать сорняки, получившие этот ген за счет скрещивания с родственными видами сельскохозяйственных растений.

Так как глюкуронидаза встречается естественно в кишечном тракте человека и других позвоночных, ее наличие в пище или в кормах, полученных из трансгенных растений, не причинит им вреда. Поэтому наличие GUS гена в трансгенных растениях считается безопасным для человека, животных и окружающей среды.