Сразу же, в 1915 г., Эйнштейн заметил, что его теория разрешает старый конфликт между наблюдениями в Солнечной системе и ньютоновской теорией. Еще в 1859 г. было установлено, что поведение орбиты планеты Меркурий не укладывается в рамки ньютоновской теории. Если предположить, что во Вселенной нет ничего, кроме Солнца и одной единственной планеты, то, согласно механике Ньютона и его же теории тяготения, эта планета должна двигаться вокруг Солнца по идеальному эллипсу. Ориентация эллипса, т.е. расположение его большой и малой полуосей в пространстве, никогда не изменяется; все выглядит так, как будто орбита планеты закреплена в пространстве. На самом деле в Солнечной системе имеются другие планеты, которые несколько искажают гравитационное поле Солнца, так что в результате эллиптические орбиты всех планет прецессируют[71], т.е. медленно поворачиваются в пространстве. В XIX в. стало известно, что орбита Меркурия поворачивается на угол, равный примерно 575 угловым секундам за сто лет. (Напомним, что один градус равен 3 600 угловых секунд.) Однако ньютоновская теория предсказывала, что орбита Меркурия должна прецессировать на угол, равный всего лишь 532 угловым секундам за сто лет. Таким образом, возникло расхождение в 43 угловых секунды за столетие. Другой способ осознать этот результат таков: если вы подождете 225 000 лет, то эллиптическая орбита Меркурия, совершив полный оборот на 360°, вернется в исходное положение, в то время как ньютоновская теория предсказывает, что это займет 244 000 лет. Казалось бы, расхождение не так уж и велико, но оно тревожило астрономов на протяжении более чем полувека. Когда Эйнштейн в 1915 г. начал рассматривать следствия своей новой теории, он сразу же сумел объяснить дополнительную прецессию орбиты Меркурия, равную 43 угловым секундам за сто лет. (Один из эффектов, дающих вклад в эту прецессию в теории Эйнштейна, это дополнительное гравитационное поле, порожденное энергией самого гравитационного поля. В ньютоновской теории тяготения гравитационное поле порождается только массой, а не энергией, поэтому такого добавочного гравитационного поля не возникает.) Позднее Эйнштейн вспоминал, что, получив этот результат, он в течение нескольких дней был вне себя от радости.
После Первой мировой войны астрономы подвергли общую теорию относительности дальнейшей экспериментальной проверке, измерив отклонение световых лучей Солнцем во время полного солнечного затмения 1919 г. Согласно эйнштейновской теории фотоны в световом луче отклоняются гравитационными полями. Это похоже на поведение кометы, прилетевшей в Солнечную систему с далекого расстояния. Комета отклоняется гравитационным полем Солнца, совершает вокруг Солнца оборот и в результате опять уходит в межзвездное пространство. Конечно, отклонение луча света намного меньше, чем отклонение кометы, так как свет распространяется намного быстрее. Быстрые кометы тоже отклоняются меньше, чем медленные. Если общая теория относительности верна, то отклонение светового луча, проходящего вблизи поверхности Солнца, должно составлять 1,75 угловых секунды или примерно пять десятитысячных долей градуса. (Чтобы измерить отклонение луча, астрономы вынуждены ждать солнечного затмения, потому что они пытаются наблюдать искривление световых лучей, приходящих от далеких звезд и проходящих вблизи Солнца. Понятно, что трудно увидеть звезды вблизи Солнца, если только солнечный свет не экранируется Луной, как это и бывает во время затмения. Таким образом, астрономы измеряют положение нескольких звезд на небесной сфере за шесть месяцев до затмения, когда Солнце находится на другой стороне неба, а затем шесть месяцев ждут этого затмения и измеряют, насколько лучи света от тех же самых звезд искривили свой путь в результате прохождения рядом с Солнцем, что проявляется в сдвиге видимого положения звезд на небе.) В 1919 г. британские астрономы снарядили экспедиции для наблюдения солнечного затмения в двух местах: в маленьком городе в северо-восточной части Бразилии и на острове в Гвинейском заливе. Они обнаружили, что в пределах экспериментальных погрешностей отклонение лучей света от нескольких звезд соответствует предсказаниям Эйнштейна. С этого момента общая теория относительности получила шумную известность во всем мире и стала предметом бесед в салонах.
Так разве непонятно, почему ОТО вытеснила ньютоновскую теорию тяготения? Новая теория объяснила одну давно известную аномалию, дополнительную прецессию Меркурия, и затем предсказала новый поразительный эффект – отклонение луча света Солнцем. Чего же еще?
Конечно, аномальная прецессия Меркурия и отклонение луча света были очень важной частью всей этой истории. Но, как всегда бывает в истории науки (а я подозреваю, что и в истории чего угодно), вся простота проблемы испаряется, если присмотреться к ней повнимательнее.
Рассмотрим расхождение между ньютоновской теорией и наблюдаемым движением Меркурия. Даже если мы ничего не знаем об ОТО, разве это расхождение не указывает нам вполне ясно, что что-то неладно с ньютоновской теорией тяготения? Совсем не обязательно. Любая теория вроде ньютоновской теории тяготения имеет такое огромное количество приложений, что все время сталкивается с какими-то экспериментальными аномалиями. Не существует теории, которая не противоречила бы какому-нибудь эксперименту. На протяжении всей своей истории ньютоновская теория Солнечной системы противоречила разным астрономическим наблюдениям. К 1916 г. в число таких расхождений входили не только аномальная прецессия орбиты Меркурия, но и аномалии в движении комет Галлея и Энке, а также в движении Луны. Во всех этих случаях реальное поведение тел не объяснялось ньютоновской теорией. Сейчас мы знаем, что объяснение аномалий в движении комет и Луны не имеет никакого отношения к основам теории тяготения. Кометы Галлея и Энке ведут себя не так, как следует из вычислений с помощью ньютоновской теории, потому что никто не знает, как правильно учесть в этих вычислениях то давление, которое оказывают газы, вылетающие из ядра движущейся по орбите кометы, когда она нагревается, проходя близко от Солнца. Аналогично, движение Луны очень сложно, так как Луна все-таки довольно большое тело и поэтому она подвержена влиянию разного рода сложных приливных сил. Оглядываясь назад, мы не должны удивляться, что при применении ньютоновской теории к этим явлениям возникли расхождения. Кроме того, было несколько предложений, как можно было бы объяснить аномалию в движении Меркурия в рамках ньютоновской теории. Одна из возможностей, серьезно обсуждавшихся в начале века, заключалась в том, что между Меркурием и Солнцем якобы имеется какое-то вещество, слегка искажающее гравитационное поле Солнца. Заметим, что ни одно из расхождений между теорией и экспериментом, образно говоря, не вскакивает, не размахивает флагом и не кричит: «Я самое важное расхождение!» Ученый конца XIX и начала ХХ вв., критически рассматривавший все данные, не мог с уверенностью прийти к выводу, что в какой-то из известных аномалий в Солнечной системе есть что-то особо важное. Нужна была теория, которая могла бы объяснить, какое же из наблюдений важно на самом деле.
Как только в 1915 г. Эйнштейн показал, что расчет дополнительной прецессии орбиты Меркурия с помощью ОТО приводит к наблюдаемому значению в 43 угловые секунды за сто лет, это сразу же явилось, конечно, серьезным свидетельством в пользу теории. На самом деле, как я поясню ниже, к этому свидетельству следовало бы отнестись еще более серьезно. Может быть, из-за обилия других возможных возмущений орбиты Меркурия, может быть, из-за сомнений в ценности теорий, подтверждаемых уже существующими данными, а может быть, просто из-за того, что шла война, но так или иначе успешное объяснение Эйнштейном прецессии Меркурия нельзя и рядом поставить с тем воздействием, которое оказало сообщение экспедиции 1919 г. по изучению солнечного затмения, подтвердившей эйнштейновское предсказание отклонения луча света Солнцем.