Мы не хотим этим сказать, что нет вообще никакой разницы между плотностью реальной материи и положительной полной космологической постоянной. Вселенная расширяется, так что какой бы ни была сегодня плотность реальной материи, в прошлом она была значительно больше. Напротив, полная космологическая постоянная и соответствующая ей плотность массы неизменны во времени. Чем больше плотность материи, тем больше скорость расширения Вселенной, так что в прошлом скорость расширения должна была бы быть намного больше, если бы скрытая масса была связана не с космологической постоянной, а с обычной материей.

Другое указание на положительность полной космологической постоянной связано с давно дебатируемой проблемой возраста Вселенной. В принятых космологических теориях мы используем наблюдаемую скорость расширения Вселенной, чтобы затем установить, что ее возраст составляет от 7 до 12 миллиардов лет. Но возраст сферических звездных скоплений внутри нашей собственной Галактики оценивается обычно как 12–15 миллиардов лет. Мы сталкиваемся с перспективой, что Вселенная моложе, чем звездные скопления внутри нее. Чтобы избежать этого парадокса, следует принять наименьшую оценку для возраста скоплений и наибольшую оценку для возраста Вселенной. С другой стороны, как мы видели, введение положительной космологической постоянной вместо темной материи приводит к уменьшению наших оценок скорости расширения Вселенной в прошлом, а следовательно, к увеличению возраста Вселенной, получаемого из любого сегодняшнего значения скорости расширения. Например, если космологическая постоянная вносит вклад в 90 % космической плотности массы, то даже при самых больших сегодняшних оценках скорости расширения, возраст Вселенной получается равным не семь миллиардов, а не менее одиннадцати миллиардов лет. Таким образом, исчезает всякое серьезное расхождение с возрастом сферических скоплений.

Положительная космологическая постоянная, обеспечивающая 80–90 % современной космической плотности массы, хорошо укладывается в те пределы, которые допускают существование жизни. Мы знаем, что квазары и, возможно, также галактики, уже образовались после Большого взрыва в эпоху, когда размер Вселенной был в шесть раз меньше, чем сейчас. Это следует из того факта, что мы наблюдаем свет от квазаров с длиной волны, увеличившейся в шесть раз (т.е. испытавшей красное смещение). В ту эпоху реальная плотность массы Вселенной была в шесть в кубе, т.е. в двести с лишним раз больше, чем сейчас, так что космологическая постоянная, соответствующая плотности массы, всего лишь в пять-десять раз большей сегодняшней плотности, не могла оказывать существенного влияния на образование галактик тогда, хотя и могла предотвратить образование галактик в более позднее время. Итак, исходя из антропного принципа, можно дать грубую оценку величины космологической постоянной – она должна обеспечивать плотность массы, в пять-десять раз большую чем сегодняшняя космическая плотность.

К счастью, этот вопрос (не в пример другим, обсуждавшимся в этой главе) можно довольно скоро решить с помощью астрономических наблюдений. Как мы видели, скорость расширения Вселенной в прошлом должна была быть гораздо больше, если скрытая масса состоит из обычной материи, а не связана с космологической постоянной. Эта разница в скоростях расширения влияет на геометрию Вселенной и на траектории световых лучей, что может быть замечено астрономами. (Например, должны меняться как число галактик, разбегающихся от нас с разными скоростями, так и число галактических гравитационных линз, т.е. галактик, гравитационные поля которых отклоняют лучи света от более далеких объектов, приводя к появлению нескольких изображений.) Пока что наблюдения не позволяют сделать окончательные выводы, но исследования активно проводятся в нескольких обсерваториях, так что вскоре будет либо подтверждена, либо опровергнута гипотеза, что космологическая постоянная обеспечивает 80–90 % сегодняшней плотности массы Вселенной. Такая космологическая постоянная все равно очень сильно меньше той, которая ожидается из оценок величины квантовых флуктуаций. Понять этот факт можно будет только с помощью антропного принципа. Итак, если наблюдения подтвердят такое значение космологической постоянной, появятся основания утверждать, что наше собственное существование входит важной составной частью в объяснение, почему Вселенная такая, какая она есть.

Все же, как бы ни было сейчас плохо, я надеюсь, что такого объяснения не потребуется. Как физик-теоретик я предпочел бы, чтобы мы могли делать точные предсказания, а не смутные утверждения, что значения каких-то констант должны лежать в интервале, более или менее благоприятном для существования жизни. Надеюсь, что теория струн станет реальной основой окончательной теории, и что эта теория будет обладать достаточной предсказательной силой, чтобы определить значения всех констант природы, включая и космологическую постоянную. Поживем – увидим.

Глава Х. На пути к цели

Наконец-то полюс! Награда трех столетий… Я не мог заставить себя осознать это. Все казалось таким простым и обычным.

Роберт Пири. Дневник

Трудно представить, что мы когда-нибудь будем знать окончательные физические принципы, которые не объясняются с помощью еще более глубоких принципов. Многим кажется само собой разумеющимся, что вместо этого будет открываться бесконечная цепочка все более глубоких и глубоких принципов. Например, Карл Поппер, патриарх современных философов науки, отвергает «идею окончательного объяснения»[205]. Он настаивает, что «всякое объяснение можно объяснять дальше с помощью теории или предположения, имеющих большую степень универсальности. Не может существовать объяснения, не нуждающегося в дальнейшем объяснении…».

Может случиться, что Поппер и другие ученые, верящие в бесконечную цепь все более фундаментальных принципов, окажутся правы. Но мне кажется, что такую точку зрения нельзя обосновывать тем, что до сих пор никто не открыл окончательной теории. Это напоминает утверждения некоторых ученых XIX в., доказывавших, что поскольку все предыдущие арктические экспедиции в течение сотен лет обнаруживали, что как далеко на север не забирайся, там все равно остается еще больше неисследованных районов моря и льда, следовательно, либо нет никакого Северного полюса, либо во всяком случае никто его никогда не достигнет. Все же некоторым это удалось.

Создается широко распространенное впечатление, что в прошлом ученые часто убаюкивали себя мыслями, будто они нашли окончательную теорию. Они вели себя подобно исследователю Фредерику Куку, считавшему в 1908 г., что именно он достиг Северного полюса. Ученые строили сложные теоретические схемы, объявляли их окончательной теорией, а затем с тупым упорством защищали их, пока неопровержимые экспериментальные доказательства не убеждали новые поколения ученых, что все эти схемы были неверны. Но, насколько я знаю, ни один уважаемый физик в ХХ в. не заявлял о создании окончательной теории. Правда, физики иногда недооценивают то расстояние, которое нужно еще пройти, прежде чем достичь окончательной теории. Вспомним предсказание Майкельсона, сделанное в 1902 г., что «вскоре наступит день, когда сходящиеся линии от многих, кажущихся далекими друг от друга областей знания соединятся… в общей точке». Совсем недавно Стивен Хокинг, принимая Лукасовскую кафедру математики в Кембридже (эту кафедру занимали перед ним Ньютон и Дирак), предположил в своей вступительной лекции, что модные в то время теории «расширенной супергравитации» станут основой теории, похожей на окончательную. Сомневаюсь, чтобы Хокинг повторил это сегодня. Но ни Майкельсон, ни Хокинг не заявляли, что окончательная теория уже построена.

Если история чему-нибудь учит, так это тому, что окончательная теория существует. В ХХ в. мы наблюдали схождение стрел объяснений, похожее на схождение меридианов к Северному полюсу. Основополагающие принципы нашей науки хотя и не приняли окончательной формы, но постоянно становились все проще и экономнее. Мы видели это схождение на примере свойств кусочка мела. Я сам наблюдал все это на протяжении моей карьеры ученого. Когда я учился на старших курсах, мне приходилось поглощать огромное количество разнообразной информации о слабых и сильных взаимодействиях элементарных частиц. Сегодняшние студенты, занимающиеся физикой элементарных частиц, изучают стандартную модель, много новой математики и этим ограничиваются. (Профессора физики часто в отчаянии воздевают руки к небу, ругая студентов, которые так мало знают о реальных явлениях в физике частиц, но думаю, что те, кто учил меня в Корнелле и Принстоне, точно так же воздевали руки по поводу того, как мало я знаю фактов, касающихся атомной спектроскопии.) Очень трудно воспринимать последовательность все более и более фундаментальных теорий, становящихся все проще и всеохватнее, и не верить, что цепочка объяснений где-то сойдется.