Рис. 198

Таблица 59 [18]

Изотоп калифорния, с наибольшей энергией связи, и известные смежные к нему

Мир вокруг нас - _199_1_californium_binding_energy.jpg

Обратим внимание, что калифорний-238, представленный на рис. 198 — не склонен к альфа-распаду, а распадается путём спонтанного деления, в отличие от калифорния-240, см. табл. 60. Вероятный механизм этого различия — показан на рис. 199. На рис. видно, что в калифорнии-240, протоны в дальней части ядра — могут, «виртуально», переходить из альфа-кластера, и образовывать кластеры дейтерия, которые затем могут перейти на базовый энергоуровень вне ядра, в виде альфа-частицы (что, в целом, аналогично механизму распада ядра бериллия-8). Для ядра калифорния-238, из-за отсутствия нейтронов в соответствующем положении (в дальней части ядра (см. рис. 198)), такой переход невозможен, поэтому калифорний-238 распадается почти исключительно путём спонтанного деления (табл. 60).

Таблица 60 [8]

Изотопы калифорния-238, -240

Мир вокруг нас - _199_2_californium_238_240.jpg
Мир вокруг нас - _199_3_240cf_nuclide_alpha_decay.jpg

Рис. 199

Каналы распада калифорния-238 и -240 — свидетельствуют в пользу представленных конфигураций этих ядер. Эти, наиболее энерговыгодные изотопы калифорния, как и соответствующие рассматривавшиеся изотопы (ядра) предыдущих чётных элементов (кюрия и плутония) — в значительной мере асимметричны.

Асимметрия в ещё большей степени — свойственна более тяжёлым ядрам этих же элементов (что означает переход нуклонов на ещё более высокие энергоуровни, с уменьшением удельной энергии связи ядер, но с ростом стабильности). Вероятное строение таких изотопов плутония и кюрия (для которых известен кластерный распад, в некоторой степени, помогающий подтвердить определённую структуру ядра) — показано на рис. 200 (см. также табл. 61).

Мир вокруг нас - _200_236pu_238pu_242cm_isotope.jpg

Рис. 200

Таблица 61 [8]

Ядра плутония и кюрия, для которых известен / измерен кластерный распад

Мир вокруг нас - _201_1_236pu_238pu_240pu_242cm.jpg

В целом, на этих, и рассмотренных ранее, примерах, видно, что изотопы всех элементов от радия до калифорния — в высокой степени асимметричны. Экспериментальным подтверждением этой асимметрии — могут служить не только кластерные распады многих изотопов (с т. зр. наглядной геометрии), и спонтанное деление калифорния-238, — но и высокие значения электрических квадрупольных моментов ядер в этой области — см. рис. 201. На рис. особо отмечены некоторые т. н. «магические» и (14, 40) «полумагические» числа нуклонов (называемые так на неклассическом этапе), соответствующие элементам, ядра (изотопы) которых имеют близкие к нулю квадрупольные моменты.

Мир вокруг нас - _201_2_nuclear_quadrupole_moment.jpg

Рис. 201 [31]. Измеряемые квадрупольные электрические моменты некоторых изотопов, в зависимости от числа протонов или нейтронов

Как известно, величина электрического квадрупольного момента, используется для оценки отклонения формы ядра от симметричной. Как видно из рис. 201, (практически) симметричное (недеформированное) строение — характерно для ядер (изотопов) таких тяжёлых элементов как: олово (Z = 50), церий (Z = 58), свинец (Z = 82), строение которых (т. е. изотопов этих элементов) рассматривалось ранее, и действительно было симметричным или близким к таковому.

Асимметрия же, как видно на рис. 201 — характерна для многих ядер (изотопов), в т. ч. растёт в направлении от радия к калифорнию, а также для самария, и др. В целом, большинство элементов в таблице Менделеева (включая радий, торий, уран, плутоний, кюрий, калифорний), имеют ядра (изотопы), с высокими значениями электрических квадрупольных моментов, = находящиеся в состоянии устойчивой (выгодной) деформации (см. рис. 201), наглядным проявлением которой, является асимметрия между правой и левой частями этих ядер.

Далее: Вернёмся к рассмотрению изотопов с наибольшей энергией связи: учитывая практическую неизменность закономерностей связи нейтронов в наиболее энерговыгодных изотопах, переходим от элемента калифорния, сразу к элементу, расположенному на 12 элементов дальше калифорния, — дармштадтию (110-й элемент таблицы Менделеева, см. табл. 50). Ядра наиболее энерговыгодных изотопов, дармштадтия-270 и -272, в симметричной конфигурации — представлены на рис. 202 (см. также табл. 62). Как видно, полностью симметричное ядро дармштадтия-270 — способно связать эффективной связью (т. е. непосредственно, или в составе мостов и выгодных кластеров), на 50 нейтронов больше, чем протонов. (Как и дармштадтий-272 — на 52 нейтрона больше, чем протонов, хотя связь последней пары нейтронов, в дальней части ядра, указанных на рис. — представляется маловыгодной). Т. о. тут, в целом — всё так же, как и у более лёгких элементов: наибольшая энергия связи — соответствует непосредственному, и в составе (сильных) мостов, связыванию нейтронов.

Мир вокруг нас - _202_1_darmstadtium_270_272.jpg

Рис. 202

Таблица 62 [18]

Изотопы дармштадтия, с наибольшей энергией связи, и известные смежные к ним

Мир вокруг нас - _202_2_darmstadtium_binding_energy.jpg

Примечание: в скобках — погрешности измерений (для последней значащей цифры)

Ядра изотопов дармштадтия — синтезированы в очень малом числе (счёт идёт на отдельные атомы), и плохо поддаются исследованию, т. к. крайне нестабильны (период полураспада наиболее долгоживущего изотопа — всего 14 секунд [8]). Свойства данных, и более тяжёлых ядер (изотопов) — пока весьма малоизучены.

Последний элемент таблицы Менделеева — имеет всего один известный изотоп, и находится на 8 элементов дальше дармштадтия, — это унуноктий (см. табл. 50).

Возможны ли элементы, более тяжёлые, чем Uuo? На сегодняшний день — таких элементов неизвестно. Однако в рамках имеющихся, в настоящее время, представлений, как на неклассическом, так и на постнеклассическом этапе, никаких фундаментальных препятствий для существования более тяжёлых ядер — не видно (хотя время жизни изотопов таких элементов — и оказывается весьма мало).

Далее: Итак, мы рассмотрели, в целом, основные данные о ядерном уровне вещества.

Теперь — можно перейти к рассмотрению более высоких уровней вещества окружающего Мира. Но пока что, возвратимся к дальнейшему рассмотрению более низкого уровня вещества, т. е. уровня элементарных частиц и вакуума. С дальнейшим рассмотрением этого уровня — связано в т. ч. решение вопроса о природе Большого Взрыва (= о происхождении окружающего Мира), где можно, исходя из наглядной геометрии элементарных частиц (в т. ч. как квантов полей), получить об этом некоторые представления.