В качестве примера можно взять кислород. Его атомы могут соединяться друг с другом и при этом образовывать конструкции, состоящие из двух атомов (О2), трех атомов (О3) — это озон, четырех атомов (О4). Они могут образовывать конструкции и с другими химическими элементами. Когда атом кислорода соединяется с атомом углерода, образуется окись углерода СО. Это ненасыщенное соединение с двумя свободными валентностями. Другими словами, здесь открыт путь еще для двух участников, которые могут войти в эту корпорацию. Если все вакансии (валентности) заняты, то соединение считают насыщенным, спроса на участников больше нет. Примером такой конструкции является соединение СО2, в котором все валентности заняты. Нельзя говорить о проблемах жизни и вообще Земли, не упомянув о СО2.
Каждый газ обладает своими особыми возможностями и свойствами. Так, атомы каждого газа объединяются в сложные конструкции при определенной температуре. Эту температуру называют критической. Если температура становится ниже критической для данного газа, то его атомы и молекулы начинают объединяться в более крупные конструкции. Если температура выше критической, то газ является паром. Если температура ниже критической, а давление достаточно высокое, то часть газа-пара переходит в жидкое состояние, начинает конденсироваться. При температуре выше критической это не может произойти, несмотря на очень высокое давление. Дело в том, что газ превращается в жидкость тогда, когда внешнее давление больше собственного давления газа-пара. А это давление зависит от температуры. Если же повышать температуру при постоянном давлении, которое равно нормальному атмосферному давлению (760 мм рт. ст.), то при определенной температуре вся жидкость превратится в пар. Эта температура и называется точкой кипения данного вещества при атмосферном давлении. Можно говорить, что эта температура является точкой сжижения. Совершенно ясно, что для каждого химического элемента эта точка кипения (сжижения) разная по величине температуры.
Поведение жидкости отличается от поведения газов. Молекулы в жидкости также образуют конструкции. Но они очень напоминают кристаллы, в которых не все направления равноправны, равнозначны. Там имеется очень много направлений пониженной прочности. Поэтому кристалл рвется, деформируется, и жидкость течет. Если бы эта прочность была больше, то кристалл оставался бы кристаллом. Эта прочность достигается при дальнейшем понижении температуры. Так можно достичь определенной температуры (для каждой жидкости разной), при которой жидкость превращается в настоящие, крепкие кристаллы. Жидкость переходит в твердую фазу, она замерзает. Эта температура называется точкой замерзания. Точка замерзания (плавления) для каждого вещества своя. Эта температура зависит от давления, хотя и очень слабо.
В газообразном состоянии атомы движутся с большой скоростью, то есть они обладают большой кинетической энергией. Когда газ превращается в жидкость, то скорости движения атомов и молекул значительно уменьшаются, то есть уменьшается их кинетическая энергия. Она еще больше уменьшается, когда жидкость переходит в твердую фазу. Но энергия исчезать и возникать не может. Она всегда сохраняется постоянной в сумме и может только переходить из одного вида в другой. В случае превращения газа в жидкость лишняя энергия выделяется в виде тепла. То же самое происходит при превращении жидкости в твердое тело. Но если вы хотите осуществить обратное превращение — твердое тело (лед) превратить в жидкость (воду), а воду в пар, вы должны эту выделенную теплоту вернуть веществу обратно. Как видите, в природе законы выполняются в полной мере, и никто не может их обойти. Очень важно то, что когда вы возвращаете льду тепло, чтобы он снова мог превратиться в воду, которой он уже был, то температура льда не повышается. Лед использует возвращаемую ему энергию (теплоту) строго по назначению — на переход в жидкое состояние. И только после того, как весь лед превратиться в воду, поступающую к нему (к ней) энергию в виде тепла он использует на повышение температуры.
Любое структурное изменение вещества, физическое или химическое, всегда связано с энергией. Оно при этом или выделяется, или поглощается. Это тепловая энергия. Наиболее частые физические структурные превращения — это затвердевание и плавление, а также испарение и сжижение (конденсация).
В природе все строго определено. Так, та теплота, которая поглощается веществом и идет на превращение одной фазы данного вещества в другую, остается в пересчете на один грамм данного вещества строго постоянной. Эту теплоту называют скрытой, поскольку ее введение в вещество не вызывает увеличения температуры. Она как будто не проявляет своего присутствия через видимое увеличение температуры. В качестве примера можно указать, что на превращение одного грамма воды в пар при температуре 100 °C требуется 539 калорий. Справедливо обратное — при превращении одного грамма пара в воду (путем конденсации) выделяется в точности такое же количество тепловой энергии.
Для Земли и человека вода — самое главное. Благодаря указанному свойству воды и сохраняется неизменным или маломеняющимся тепловое состояние планеты. Значит, вода стабилизирует климат Земли. Это мы подробно рассмотрели в книге «Озонные дыры и гибель человечества?»
Любопытно, что переход вещества из одного фазового состояния в другое может быть задержан. Так, можно задержать кристаллизацию в переохлажденной жидкости. Известно, что переохлажденная жидкость с понижением температуры становится все плотнее и плотнее. Но при этом она все же не превращается в твердое тело в собственном смысле этого слова. Как ни странно это звучит, такой переохлажденной жидкостью является стекло. Стекло течет, это доказывает то, что старинные оконные стекла внизу толще, чем в верхней части. Собственно, переохлажденная жидкость отличается от твердого тела тем, что она не имеет четко выраженной точки (температуры) плавления. Когда переохлажденная жидкость поглощает тепло, она не переходит в жидкое нормальное состояние резко, а постепенно размягчается.
Что же касается истинных твердых тел, то они бывают макро-и микрокристаллическими. В микрокристаллических твердых телах кристаллы слишком малы, для того чтобы их можно было увидеть невооруженным глазом.
Когда образуются кристаллы, то молекулярные структуры в них исчезают. При этом атомы образуют сравнительно крупную решетку. Кристаллическая решетка может меняться в зависимости от давления и температуры. Примером разных кристаллических решеток могут служить алмаз и графит, которые являются модификациями углерода.
Обычная соль NaCl состоит из кристаллов, в которых атомы образуют правильную решетку. Сейчас такие решетки изучают с помощью электронного микросита. Силикаты образуют самые различные кристаллы весьма сложной структуры. В определенных условиях кристаллы любого вещества имеют строго определенную форму. Это напоминает живой организм. В сущности, они тоже растут, пристраивая к своей поверхности новые решетки из молекул, которые они извлекают из окружающей среды. Этот процесс очень непростой. Ведь кристалл выступает и как самокатализатор. Он создает сам себя (растет) из материала, который содержится в окружающей среде. Поэтому и возникает аналогия между кристаллом и живым веществом. Когда органическая молекула действует как шаблон при самокопировании или самовоспроизведении, то происходит точно такой же процесс. Ведь кристаллизация родственна химическому процессу полимеризации, при котором одинаковые молекулы соединяются в цепочки большого молекулярного веса. Вполне можно рассматривать кристалл как одну молекулу полимера.
Простой вариант полимеризации реализуется, когда сложные молекулы образуются из атомов одного сорта. Мы говорили о кислороде в виде О, О2, О3 и О4. Формально это можно считать начальной стадией кристаллизации. Она не имеет своего продолжения только потому, что температура для этого очень высокая, а давление слишком мало.