СКОЛЬКО ИМЕЕТСЯ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ?

Считается, что жизнь может возникнуть и развиваться не только на планетах, но и на астероидах, холодных звездах и т. д. Но специалисты считают, что надо прежде всего рассматривать цивилизации, обитающие на планетах. Не только Солнце, но и другие звезды обладают планетными системами. Но далеко не на каждой планете создаются такие физико-химические условия, при которых возможно зарождение и развитие жизни. Одним из основных условий этого является соответствующая температура. Она должна находиться в пределах, обеспечивающих нормальное протекание химических реакций. При слишком низких и слишком высоких температурах нормальное протекание реакций невозможно, поэтому невозможно возникновение и развитие жизни. Кстати, очень высокие температуры для жизни более опасны, чем очень низкие. Известно, что простейшие виды бактерий и вирусов при температуре, близкой к абсолютному нулю, могут находиться в состоянии анабиоза. Для развития жизни должна быть обеспечена не только температура в некоторых пределах, но и не очень быстрые ее изменения. Очень резкие колебания температуры являются губительными для возникновения и развития жизни.

Температура планеты зависит от величины той энергии, которую она получает от своей звезды. Эта энергия зависит как от энергетических возможностей звезды (ее светимости), так и от удаления планеты от звезды. Если данная планета будет находиться слишком близко к звезде, то ее температура может оказаться недопустимо высокой (с точки зрения возникновения жизни). Если же планета находится слишком далеко от звезды, то на ней будет чрезмерно холодно для того, чтобы там возникла и развивалась жизнь. Значит, для звезды с данной конкретной светимостью имеются некоторые предпочтительные удаления, на которых нахождение планеты окажется оптимальным в смысле возникновения жизни. Зоны в пределах указанных расстояний специалисты назвали «зонами обитаемости». Ясно, что для звезд с разными светимостями «зоны обитаемости» находятся на различных удалениях от звезд. Чем выше светимость звезды, то есть чем более «ранним» является ее спектральный класс, тем больше ее «зона обитаемости». Легко понять, что светимость звезды не должна быть чрезмерно малой или чрезмерно высокой. Если рассматривать все звезды в нашей Галактике, то окажется, что из каждых ста звезд примерно только одна или две имеют светимости, оптимальные для возникновения жизни на их планетах. Таким образом, из 150 миллиардов звезд нашей Галактики примерно миллиард звезд обладает светимостью, необходимой для возникновения и развития жизни на планетах этих звезд.

Что касается очень быстрых колебаний температуры на планетах, то они могут быть обусловлены или очень быстрым изменением светимости звезды, или же таким движением планет, при котором в данном месте температура на них будет меняться очень быстро. Известно, что светимость звезды, если она «села» на главную последовательность, изменяется во времени незначительно. Например, светимость нашей звезды — Солнца за последние несколько миллиардов лет изменялась не более чем на несколько десятков процентов. Не в большей мере изменялась светимость и других звезд, находящихся на главной последовательности. Огромное количество красных карликов существенно изменяет свою светимость во времени. Поэтому на их планетах трудно допустить существование жизни. Надо иметь в виду, что красные карлики составляют подавляющее большинство всех звезд. Для зарождения и развития жизни на планете важна не только соответствующая температура. Для этого необходимо, чтобы планета обладала не очень малой, но и не очень большой массой. Если масса планеты слишком мала (например, как у Луны), то она не сможет удержать свою атмосферу. Как известно, если любое тело вблизи планеты движется со скоростью, которая превышает вторую космическую, то оно сможет преодолеть притяжение планеты и уйти в космос. Это справедливо и по отношению к любой частице атмосферного газа (молекуле, атому). На Луне вторая космическая скорость (астрофизики ее называют «параболической») равна всего 2,4 км/с. Поэтому частицы атмосферного газа Луны сумели покинуть ее. На Земле параболическая скорость значительно больше. Поэтому Земля удерживает свою атмосферу в течение многих миллионов лет. Но это не значит, что определенная часть атмосферных частиц не покидает зону, контролируемую земным притяжением. Чем легче частица, тем легче ей покинуть планету. Чем выше от земной поверхности, тем меньшую массу имеют частицы атмосферного газа. В самой верхней части земной атмосферы располагаются самые легкие частицы — атомы водорода. Они-то и убегают, причем весьма успешно. Достаточно всего нескольких лет, чтобы весь водород из земной атмосферы убежал (диссипировал) в космическое пространство. Но тем не менее водород в атмосфере Земли не только не исчезает, но и не уменьшается. Дело в том, что он непрерывно пополняется новым водородом, главным образом в результате образования водяного пара при испарении Мирового океана. Скорость, которую может иметь частица атмосферного газа, зависит не только от массы частицы, но и от температуры атмосферного газа. В верхней части атмосферы Земли температура достигает 500 °C и более. Поэтому и скорость частиц там может быть больше параболической скорости. Двигаясь с параболической скоростью, частица имеет возможность покинуть планету только в том случае, если ничто не мешает ей двигаться. Если же она при своем движении часто сталкивается, то направление ее движения изменяется. Поэтому, вместо того чтобы удаляться от планеты, часть частиц, испытавших столкновения, будет двигаться вниз, по направлению к планете. Можно сказать, что если частиц атмосферного газа много, то есть плотность атмосферы велика, то частицы, сталкиваясь друг с другом, сами себе мешают вырваться за пределы притяжения планеты. Если масса планеты настолько велика, что параболическая скорость становится недостижимо большой, то частицы атмосферного газа вообще лишены возможности выйти за пределы притяжения планеты. Они будут оставаться при ней в течение многих миллионов лет. Можно также сказать, что атмосфера такой планеты является первоначальной, «первобытной». Известно, что звезды и планеты образовались из среды, состоящей главным образом из водорода и гелия. Из этой же среды образовалась и атмосфера планеты. Она у планет большей массы должна иметь большую плотность. Это подтверждается планетами Юпитер и Сатурн, атмосферы которых действительно таковы: имеют очень большую плотность и состоят из водорода и гелия. Все это определяется тем, что массы этих планет велики. Если их массы увеличить еще в 5 — 10 раз, то они принципиально не будут отличаться от звезд-карликов.

Несомненно, сила притяжения планеты должна сказаться и на организации и функционировании живых организмов. Справедливо указывалось на то, что если эта сила велика (то есть масса планеты слишком велика), то функционирование и организация живых организмов затруднены. Можно заключить, что жизнь возможна на планетах, масса которых не меньше нескольких процентов от массы Земли, но не превышает десятикратной массы Земли. Следует подчеркнуть, что рассмотренные физические условия на планете (температура, состав атмосферы, сила притяжения) взаимосвязаны. Ведь планеты с разными массами в данной планетной системе располагаются на разных удалениях от своей звезды не случайно, а в определенном порядке. На примере нашей планетной системы это выглядит так. Планеты земной группы образовались не из первоначальной среды, богатой водородом и гелием. Они образовались из вещества с малым содержанием водорода и гелия, вещества, которое состояло из пылинок и молекулярных агрегатов, которые образовались позднее в первоначальной туманности. Поэтому «внутренние» планеты (планеты земной группы) состоят преимущественно из тяжелых химических элементов. В то же время на сравнительно больших удалениях от Солнца происходила конденсация среды, состоящей из водорода и гелия, в результате которой образовались планеты-гиганты.