Все дело в том, что заметка Раунда не оказала никакого влияния на последующее развитие науки о светящихся кристаллах. Лосев же провел детальное исследование этого явления. Более того, он описал в последующих работах, что в данном явлении имеют место фактически два разного типа свечения при различной полярности напряжений на контакте. Используя современную терминологию, можно сказать, что О. В. Ло сев исследовал не только инжекционную электролюминесценцию, которая в настоящее время лежит в основе светодиодов и полупроводниковых лазеров, но предпробойную электролюминесценцию, которая применяется в оптоэлектронике при создании люминесцентных дисплеев.

Следует подчеркнуть, что именно в исследовании свойств карборунда проявился истинный талант О. В. Лосева как экспериментатора. Применяя предложенный им метод шлифов и зондовой микроскопии, перемещая тонкое металлическое острие поперек шлифа, он показал с точностью до одного микрона, что предповерхностная часть кристалла имеет сложное строение. Он выявил активный слой толщиной несколько микрон.

На основе этих исследований Лосев предположил, что причиной униполярной проводимости являются различные условия движения электронов по обе стороны активного слоя. Совершенствуя эксперимент и доведя число зондов-электродов до трех и более, он свое предположение подтверждает. Фактически в этом эксперименте Лосев был близок к изобретению трехэлектродного полупроводникового прибора — транзистора [23].

Судя по найденной недавно рукописной автобиографии О. В. Лосева, написанной им самим в 1939 г. (оригинал хранится в Политехническом музее), «установлено, что с полупроводниками может быть построена трехэлектродная система, аналогичная триоду, как и триод, дающая характеристики, показывающие отрицательное сопротивление. Эти работы в настоящее время подготавливаются мною к печати». Комплексный экспериментальный метод позволил Лосеву исследовать вентильный фотоэлектрический эффект в карборунде. В последней из опубликованных им статей в 1940 г. [24] он пишет: «Явление вентильного эффекта в карборунде обратимо: при токе от внешнего источника напряжения, внутри того же самого слоя полупроводника, в котором мог происходить вентильный фотоэффект происходит довольно интенсивное холодное свечение…». Чтобы выбрать наиболее подходящий материал для изготовления фотоэлементов, Лосев исследовал огромное количество полупроводников. Он выбрал кремний, который давал наиболее высокую фоточувствительность.

Великую Отечественную войну О. В. Лосев встретил, работая на кафедре физики 1-го Ленинградского медицинского института. Он отказался от эвакуации и не прекратил своей научной деятельности, тем самым оказывая большую помощь фронту. Им были разработаны электростимулятор сердечной деятельности, портативный прибор для обнаружения металлических осколков в ранах, система противопожарной сигнализации. Несмотря на язвенную болезнь желудка и недостаточное питание, Лосев становится донором и отдает свою кровь для защитников Ленинграда. Все это самым неблагоприятным образом сказалось на его здоровье и 22.01.1942 года Олег Владимирович Лосев скоропостижно скончался.

Как мы видим, жизнь Олега Владимировича Лосева яркая и трагичная. Она напоминает сверкающий след метеора на научном небосклоне. В двадцать лет он делает открытия, значимость которых мы начинаем понимать только теперь. В 35 лет ему присуждают ученую степень кандидата физико-математических наук. Его преданность науке не имеет границ. Трагическая смерть от голода в осажденном Ленинграде в 39 лет вызывает у нас скорбь и сострадание.

До сих пор не прекращаются споры о том, от какого момента следует отсчитывать время зарождения полупроводниковой электроники. Одни считают — это момент создания полупроводникового выпрямителя. Но я считаю, что следует отсчитывать от момента создания полупроводниковых приборов, способных не только выпрямлять, но и усиливать и генерировать электромагнитные колебания. Человеком, который это совершил, был наш соотечественник, изобретатель и ученый Олег Владимирович Лосев. Его замечательные открытия — усиление и генерация, свечение полупроводников, намного опередили свое время и оказались практически забытыми в наше время.

Хотелось бы закончить эту главу словами академика

А.Ф. Иоффе о Лосеве [25]: «О. В. Лосев был талантливым и совершенно оригинальным ученым и изобретателем, шедшим своим путем, иногда предвосхищая развитие техники. Его результаты имеют значение как для радиотехники, так и для многообразных применений полупроводников. Явление падающей характеристики было открыто еще в 1922 г. О. В. Лосевым на контакте стальной проволочки с кристаллом цинкита и некоторых других материалов. Впрочем, и в вопросе о значении р-n границы приоритет принадлежит тому же О.В. Лосеву, который в 1938–1939 гг. изучал видимые на глаз прослойки в кристаллах карборунда с противоположным механизмом проводимости. Таким образом, О. В. Лосев не только подметил выпрямление на границе между Р и N карборундом, но и открыл и, по-видимому, правильно объяснил свечение при прохождении тока через границу».

8. Создание и развитие отечественной радиопромышленности

Для того чтобы понять, как зарождалась отечественная радиотехническая промышленность, кратко обрисуем политическую и экономическую ситуацию в начале 1920-х годов в нашей стране. В те годы главными в жизни страны стали задачи мирного строительства. Специфика того времени состояла в многообразии форм социально-экономического развития, в остроте политической борьбы, потребовавших отмены политики «военного коммунизма», выработки и внедрения новой экономической политики (НЭП).

Итак, как все было. После окончания Гражданской войны страна оказалась в тяжелейшем положении, столкнулась с глубоким экономическим и политическим кризисом. В результате двух войн — сначала Первой мировой, затем Гражданской — Россия потеряла более четверти своих национальных богатств. Особенно крупный урон понесла промышленность. Объем ее валовой продукции уменьшился в 7 раз. Запасы сырья и материалов к 1920 г. были в основном исчерпаны. Конечно, можно считать, что начало возрождения отечественной радиотехнической отрасли было положено декретом В.И. Ленина в 1918 году по созданию в Нижнем Новгороде знаменитой радиолаборатории, где создаются первые мощные советские радиолампы. Однако настоящим прорывом все-таки было создание в 1922 г. Государственного треста заводов слабого тока, объединившего национализированные дореволюционные радиотехнические предприятия. Именно этот трест вошел историю отечественной радиотехники созданием первого советского массового лампового радиоприемника «Радиолина» (рис. 28).

Россия - родина Радио. Исторические очерки - _19.jpg

Рис. 28. Первый отечественный ламповый приемник «Радиолина»

Век «Радиолины» был недолог, уже в 1926 году ее заменили более компактные и совершенные приемники конструкции Э. Я. Борусевича сначала на триодах, а потом и на первых отечественных экранированных лампах, например приемник ЭКЛ-4 (Экранированный Козицкого Любительский). Разработанный в 1930-м году, он был доработан все тем же Э. Я. Борусевичем и освоен в производстве на заводе им. Козицкого в Ленинграде.

В трудных экономических условиях партийное руководство молодой советской страны развитие радиотехнической промышленности пыталось строить и осуществлять в основном на основе сложившихся представлений о возможности использования военно-коммунистических методов. Опираясь на проведенную национализацию крупных и средних предприятий, ВСНХ поставил своей задачей завершить обобществление всей промышленности. Руководство ВСНХ установило даже срок — один месяц. В этих целях 29 ноября 1920 г. издается постановление ВСНХ о национализации всей даже мелкой промышленности. В 1920 — начале 1921 гг. был принят ряд декретов Советского правительства об отмене платы за топливо, коммунальные услуги, о бесплатном отпуске населению продуктов питания и предметов широкого потребления. В конечном итоге все эти преждевременные, непродуманные шаги правительства привели к острому политическому и экономическому кризису весной 1921 г.