Отыскание общих признаков может при известных обстоятельствах оказаться весьма важным познавательным актом. Уже на первых этапах своей истории человек должен был, например, осознать, что сравнение, скажем, трех коров с тремя яблоками указывает на их общую характеристику, а именно ту, которая выражается словом «три». Формирование понятия числа составляет решающий шаг, выводящий человека из той сферы мира, которая дана ему непосредственно в ощущениях, и погружающий его в сплетение рационально постигаемых структур мышления. Утверждение, что два ореха и два ореха составляют вместе четыре ореха, остается в силе, даже если мы заменим слово «орех» словом «хлеб» или названием какого угодно другого предмета. Его, следовательно, можно обобщить и облечь в абстрактную форму: два и два — четыре. Это было важным открытием. По-видимому, уже достаточно рано люди осознали присущую понятию числа особую способность упорядочивать, а это привело к тому, что некоторые числа стали толковать символически. С точки же зрения современной математики отдельные числа не так важны, как сама операция счета. Именно эта операция порождает непрерывный ряд натуральных чисел и внутренне предполагает все соотношения, изучаемые, например, в теории чисел. Освоив счет, люди сделали решающий шаг в сферу абстракции, был открыт путь, ведущий к математике и математическому естествознанию.
Теперь мы уже в состоянии перейти к изучению феномена, с которым мы постоянно будем встречаться в дальнейшем на разных уровнях абстрактности в математике или в естественных науках Нового времени. По отношению к процессу развития абстрактного мышления в науке его можно было бы назвать чем-то вроде прафеномена,[88] — хотя Гёте, разумеется, не использовал бы это изобретенное им выражение в подобном контексте. Феномен этот можно назвать, положим, развертыванием абстрактных структур. Понятия, первоначально полученные путем абстрагирования от конкретного опыта, обретают собственную жизнь. Они оказываются более содержательными и продуктивными, чем можно было ожидать поначалу. В последующем развитии они обнаруживают собственные конструктивные возможности: они способствуют построению новых форм и понятий, позволяют установить связи между ними и могут быть в известных пределах применимы в наших попытках понять мир явлений.
Например, из понятия счета и связанных с ним простых операций вычисления развилась в дальнейшем — отчасти в Античности, отчасти в Новое время — сложная арифметика и теория чисел. Эти науки открыли, по сути дела, только то, что с самого начала было заложено в понятии числа. Далее, число и развитое на его основе учение о числовых отношениях позволили измерять и сравнивать отрезки. Отсюда возникла наука геометрии, которая в концептуальном отношении выходит за пределы учения о числе. Уже попытка пифагорейцев положить теорию чисел в основание геометрии натолкнулась на трудности, связанные с отношением несоизмеримых отрезков. В результате они должны были расширить совокупность известных чисел, они были в какой-то мере вынуждены изобрести иррациональное число. Двигаясь дальше, греки пришли к понятию континуума и к знаменитым парадоксам, которые впоследствии были изучены философом Зеноном. Мы, впрочем, не собираемся здесь углубляться в трудности, с которыми было связано развитие математики, нам важно просто показать, какое богатство форм заложено в понятии числа и может быть в нем раскрыто.
Итак, абстрагирование может происходить следующим образом: сформированное вначале абстрактное понятие начинает жить собственной жизнью, оно дает начало новым формам или упорядочивающим структурам, изобилие которых превосходит все ожидания. Впоследствии же эти структуры могут оказаться полезными в понимании явлений окружающего мира.
В связи с этим основным феноменом разгорелась пресловутая полемика о том, что же, собственно, является объектом математики. Вряд ли можно сомневаться в том, что в математике мы имеем дело с настоящим познанием. Но познанием чего? Описываем ли мы в математике нечто объективно сущее, нечто такое, что в каком-то смысле существует независимо от человека, или же математика представляет собой всего лишь выражение способности человеческого мышления? Не являются ли выводимые в математике законы просто утверждениями о структуре человеческого мышления? Я не намерен заниматься здесь этими трудными проблемами всерьез, хочу лишь высказать несколько соображений, подтверждающих объективный характер математики.
Не лишено вероятности, что на других планетах, скажем на Марсе, а если нет, то в других солнечных системах, существует нечто похожее на жизнь. И безусловно, следует считаться с той возможностью, что на каком-нибудь другом небесном теле живут существа, у которых способность к абстрактному мышлению развилась достаточно, чтобы создать понятие числа. Если это так и если они строят на основе понятия числа математическую науку, то они придут к тем же теоретико-числовым утверждениям, что и мы, люди. Арифметика и теория чисел в принципе не могут быть у них другого вида, чем у нас; их результаты должны совпадать с нашими. Следовательно, если считать математику набором утверждений о мышлении человека, то, во всяком случае, речь идет о мышлении как таковом, а не просто о нашем человеческом мышлении. Поскольку вообще существует мышление, математика должна быть одинаковой. Это утверждение можно сопоставить с другим, относящимся к области естественных наук. На других планетах или на еще более удаленных небесных телах, несомненно, действуют те же самые законы природы, что и у нас. Это вовсе не просто теоретическое допущение; ведь с помощью телескопов мы можем убедиться в том, что там присутствуют такие же, как у нас, химические элементы, что они образуют те же самые химические соединения и свет, который они испускают, имеет ту же самую спектральную структуру. Но не станем пока выяснять, имеет ли этот эмпирический естественнонаучный факт какое-либо отношение к тому, что мы только что говорили о математике, а если имеет, то какое.
Прежде чем переходить к развитию естественных наук, обратимся еще раз к математике. На протяжении своей истории математика постоянно формировала новые, все более емкие понятия и поднималась, таким образом, на новые уровни абстрактности. Область чисел расширилась, включив в себя иррациональные числа, а затем комплексные числа. Понятие функции открыло доступ в царство высшего анализа, дифференциального и интегрального исчисления. Понятие группы оказалось продуктивным в алгебре, геометрии и теории функций. Оно навело на мысль о том, что на высшем уровне абстрактности удастся, быть может, упорядочить и понять всю математику, во всем многообразии ее дисциплин с единой точки зрения. В качестве абстрактной основы такого объединения всей математики была разработана теория множеств. Трудности теории множеств вынудили в итоге перейти от математики к математической логике, которая нашла свое развитие в 20-х годах, особенно в работах Давида Гильберта и его сотрудников в Геттингене[89]. Каждый раз приходилось подниматься с достигнутого уровня абстрактности на следующий, поскольку в той ограниченной области, где проблемы первоначально возникли, их нельзя было не только по-настоящему решить, но даже и как следует осмыслить. Лишь включение их в контекст более широких проблем открывало возможность по-новому понять их, а это в свою очередь позволяло формировать новые, еще более емкие понятия. Стоило убедиться, к примеру, что аксиому параллельных в евклидовой геометрии доказать невозможно, как была разработана неевклидова геометрия. Но действительное понимание пришло только после того, как был поставлен гораздо более общий вопрос: можно ли доказать в данной системе аксиом, что она не содержит противоречия?[90] Только когда вопрос был поставлен таким образом, была затронута сама суть проблемы. В конце концов развитие математики привело к тому, что основания ее могут обсуждаться только в чрезвычайно абстрактных понятиях, которые, кажется, полностью утратили какую бы то ни было связь с миром предметного опыта. Математик и философ Бертран Рассел высказался так: «Математика — это занятие, в котором никогда не известно, ни о чем говорят, ни истинно ли то, что говорят». (Поясним вторую часть высказывания: всегда можно убедиться в том, что математические формулы правильны, но не в том, существуют ли в действительности объекты, к которым они могли бы относиться.) Но история математики служит нам здесь всего лишь примером, позволяющим признать неизбежность движения к большей абстрактности и к унифицированности. Теперь следует задаться вопросом, происходит ли что-нибудь подобное в естественных науках.