Наблюдательная астрономия в значительной мере основана на аналогичных рассуждениях. С помощью телескопов астрономы собирают свет от удалённых объектов и по его цвету — длине волны анализируемого света — могут определить химический состав источника света. Впервые это было осуществлено при солнечном затмении 1868 года, когда французский астроном Пьер Жансен и, независимо от него, английский астроном Джозеф Норман Локьер, изучали свет от солнечной короны, когда солнечный диск был закрыт луной. Они обнаружили странное яркое излучение с длиной волны, которое нельзя было воспроизвести в лаборатории с помощью известных веществ. Это привело к смелому — и правильному — предложению, что свет был испущен неким новым, ранее неизвестным элементом. Неизвестным элементом оказался гелий, в названии которого отражён тот факт, что это вещество было открыто сначала на Солнце, а потом на Земле. Это открытие убедительно показало, что подобно тому как любого из нас можно однозначно идентифицировать по отпечаткам пальцев, различные атомы однозначно определяются длинами волн излучаемого (и поглощаемого) ими света.

В последующие десятилетия астрономы, изучающие длины волн света, приходящего от всё более и более удалённых астрофизических источников, столкнулись с необычным свойством. Хотя набор длин волн наблюдаемого света был похож на тот, что получался в лабораторных экспериментах с хорошо известными атомами типа водорода и гелия, они оказались несколько длиннее. От одного удалённого источника длина волны могла быть на 3 процента больше, от другого источника на 12 процентов больше, от третьего — на 21 процент. Астрономы назвали это явление красным смещением, потому что увеличение длины волны, по крайней мере в видимой части спектра, соответствует покраснению.

Дать название явлению уже полдела, но в чём причина растяжения длины волны? Ответ нам хорошо известен. Как ясно показали наблюдения Весто Слайфера и Эдвина Хаббла, Вселенная расширяется. Упоминавшаяся ранее модель неизменной карты как раз подходит для интуитивного объяснения.

Давайте нарисуем световую волну, бегущую к нам из галактики Ноа. Отмечая на нашей неизменной карте путь, проходимый волной, мы увидим равномерную последовательность гребней волны, непреклонно движущихся как волновой поезд в наш телескоп. Одинаковость волн может побудить нас думать, что длина волны света в момент излучения (расстояние между двумя последовательными гребнями) будет той же самой, что и в момент приёма. Но самое интересное наступает тогда, когда мы подключаем легенду карты для пересчёта расстояний на карте в действительные расстояния. Поскольку Вселенная расширяется, отношение пересчёта в момент окончания пути больше, нежели в самом начале. Из этого следует, что хотя длина световой волны, измеряемая по карте, остаётся неизменной, при пересчёте в реальные длины она увеличивается. Когда свет достигает нашего телескопа, его длина волны больше, чем в момент излучения. Словно длина волны — это стежки на эластичной ткани. Если ткань растянуть, то стежки тоже растянутся. Аналогично, расширение пространства влечёт за собой растяжение световых волн.

Можно дать количественные оценки. Если длина волны увеличена на 3 процента, то в настоящий момент Вселенная на 3 процента больше, чем в момент испускания света; если длина волны больше на 21 процент, то Вселенная расширилась на 21 процент с того момента, когда свет начал своё путешествие. Таким образом, измерение красного смещения содержит информацию о размере Вселенной в момент испускания света, который сейчас до нас дошёл, по сравнению с размером Вселенной в настоящее время.[38] Следующий очевидный шаг состоит в том, чтобы выстроить последовательность измерений красных смещений для нахождения изменения расширения Вселенной во времени.

Засечка на стене в детской комнате отмечает рост ребёнка в определённый момент времени. Последовательность засечек задаёт рост ребёнка при соответствующих датах. Имея достаточно много засечек, можно определить, как быстро рос ребёнок в разные моменты времени. Рывок в девять, более спокойный период до одиннадцати, затем опять рывок в тринадцать, и так далее. Когда астрономы измеряют красное смещение сверхновых типа Ia, они делают аналогичные «засечки» для пространства. Во многом подобно засечкам роста ребёнка, последовательность красных смещений различных сверхновых типа Ia позволяет нам вычислять, как менялась скорость расширения Вселенной в разные периоды в прошлом. Имея такие данные, астрономы могут определить темп замедления расширения пространства. Именно такой подход был разработан упоминавшимися выше исследовательскими группами.

Для его осуществления осталось сделать последний шаг — найти метод датировать такие засечки. Астрономы должны были определить, когда был испущен свет той или иной сверхновой. Это несложная задача. Поскольку разница между видимой и собственной яркостями сверхновой задаёт расстояние и скорость света нам известна, можно непосредственно вычислить, когда именно свет был испущен сверхновой. Это правильные рассуждения, но важно не упустить из виду одну существенную деталь, связанную с рассмотренным выше растяжением траектории светового луча.

Когда свет распространяется в расширяющейся Вселенной, он покрывает заданное расстояние не только потому, что обладает собственной скоростью распространения в пространстве, но и частично благодаря расширению самого пространства. Можно провести аналогию с движущейся дорожкой в аэропорту. На дорожке можно уехать дальше, не увеличивая при этом свою собственную скорость, потому что движение самой дорожки дополняет ваше перемещение. Точно так же свет от удалённой сверхновой доходит дальше, без увеличения собственной скорости, потому что расширяющееся пространство способствует его движению. Для точного определения момента излучения дошедшего до нас света необходимо учесть оба вклада в проходимое им расстояние. Математические выкладки довольно хитроумные (если вы заинтересовались, загляните в примечания), но на сегодняшний день мы их ясно понимаем.{49}

Учитывая эти тонкости, а также многие другие теоретические и наблюдательные данные, обе исследовательские группы смогли определить масштабный фактор Вселенной в различные моменты в прошлом. Таким образом, была найдена последовательность засечек, задающих контур Вселенной, и исследователи смогли определить, как менялась скорость расширения при развитии космоса.

Космическое ускорение

Проверив и многократно перепроверив всё самым тщательным образом, обе группы опубликовали свои результаты. Противоположно тому, что ожидалось, на протяжении последних 7 миллиардов лет расширение пространства не замедлялось. Оно ускорялось.

Результаты этой новаторской работы и последующих наблюдений, которые лишь закрепили полученные выводы, представлены на рис. 6.2. Наблюдения показали, что более 7 миллиардов лет назад масштабный фактор действительно вёл себя, как ожидалось: его рост постепенно замедлялся. Если бы так продолжалось, кривая на рисунке постепенно стала бы горизонтальной или даже начала опускаться. Однако, как было выяснено, примерно 7 миллиардов лет назад произошло нечто экстраординарное. Кривая стала подниматься, что ознаменовало рост масштабного фактора. Расширение пространства начало ускоряться и Вселенная переключилась на более высокую передачу.

Скрытая реальность. Параллельные миры и глубинные законы космоса - i_025.png

Рис. 6.2. Зависимость масштабного фактора Вселенной от времени. Космическое расширение замедлялось до примерно 7 миллиардов лет назад, а затем начало ускоряться

Космическая плотность зависит от формы кривой на рисунке. При ускоренном расширении пространство будет бесконечно расширяться, разводя удалённые галактики всё дальше и всё быстрее. Через сто миллиардов лет любая галактика, не находящаяся сейчас в нашей окрестности (в гравитационном кластере, состоящем примерно из дюжины галактик, называемом нашей «местной группой»), выйдет за пределы нашего космического горизонта и перестанет быть видимой для нас. Если у астрономов будущего не будет под рукой записей, оставленных для них в более ранние эпохи, их космологические теории будут создаваться в попытке объяснить изолированную вселенную с небольшим числом галактик, одиноко плывущую в море неподвижного мрака. Мы живём в особенную эпоху. Ускоренное расширение лишит нас знания, дарованного Вселенной.