Более двух столетий любая попытка открыть заново доказательство Великой теоремы Ферма заканчивалась неудачей. В юношеские годы Эндрю Уайлс изучил труды Эйлера, Жермен, Коши, Ламе и, наконец, Куммера. Уайлс надеялся, что ему удастся извлечь уроки из ошибок, допущенных великими предшественниками, но к тому времени, когда он стал старшекурсником Оксфордского университета, на его пути встала та же каменная стена, перед которой остановился Куммер.
Некоторые из современников Уайлса начали подозревать, что проблема Ферма может оказаться неразрешимой. Не исключено, что Ферма заблуждался, и поэтому причина, по которой никому не удалось восстановить доказательство Ферма, заключается просто в том, что такого доказательства вообще не существовало. Уайлса вдохновляло то, что в прошлом, после упорных усилий на протяжении столетий, для некоторых значений n доказательство Великой теоремы Ферма все же было обнаружено. И в некоторых из этих случаев удачные идеи, позволившие решить проблему, не опирались на новые достижения математики; наоборот, это были доказательства, которые могли быть давно быть обнаружены.
Одним из примеров задачи, упорно не поддававшейся решению на протяжении десятилетий, может служить гипотеза о точках. В ней речь идет о нескольких точках, каждая из которых соединена с другими точками прямыми, как показано на рис. 13. Гипотеза утверждает, что невозможно нарисовать диаграмму такого рода так, чтобы на каждой прямой лежали по крайней мере три точки (диаграмму, на которой все точки лежат на одной и той же прямой, мы исключаем из рассмотрения). Экспериментируя с несколькими диаграммами, мы можем убедиться в том, что гипотеза о точках, по-видимому, верна. На рис. 13а пять точек связаны шестью прямыми. На четырех из этих линий не наберется по три точки, и поэтому ясно, что такое расположение точек не удовлетворяет требованию задачи, согласно которому каждой прямой принадлежит по три точки.
Рис. 13. На этих диаграммах каждая точка связана с каждой из остальных точек прямыми. Можно ли построить такую диаграмму, на которой каждая прямая проходит по крайней мере через три точки?
Добавив одну точку и одну проходящую через нее прямую, мы снизили число прямых, на которых не лежат по три точки, до трех. Но дальнейшее приведение диаграммы к условиям гипотезы (такая перестройка диаграммы, в результате которой на каждой прямой оказалось бы по три точки), по-видимому, невозможна. Разумеется, это не доказывает, что такой диаграммы не существует.
Поколения математиков пытались найти доказательство, казалось бы, нехитрой гипотезы о точках — и потерпели неудачу. Эта гипотеза вызывает еще большее раздражение потому, что когда решение в конце концов было найдено, выяснилось, что для него необходимы лишь минимальные познания в математике и один неординарный поворот в рассуждениях. Ход доказательства намечен в Приложении 6.
Вполне возможно, что все методы, необходимые для доказательства Великой теоремы Ферма, уже имелись в распоряжении математиков, и что единственным недостающим ингредиентом был какой-то остроумный ход. Уайлс не собирался сдаваться: детская мечта о доказательстве Великой теоремы Ферма превратилась в глубокое и серьезное увлечение. Ознакомившись со всем, что можно было узнать о математике XIX века, Уайлс решил взять на вооружение методы XX века.
Глава 4. Уход в абстракцию
Доказательство — это идол, которому математики приносят себя в жертву.
После работ Эрнста Куммера надежды найти доказательство ослабли, как никогда прежде. Кроме того, в математике начали развиваться различные новые области. Возник риск, что новое поколение математиков останется в неведении относительно неразрешимой проблемы. К началу XX века теорема Ферма все еще занимала особое место в сердцах специалистов по теории чисел, но они относились к ней так же, как химики относятся к алхимии. И алхимия, и Великая теорема Ферма в глазах наших современников выглядят романтическими мечтами прошлого.
В 1908 году Пауль Вольфскель, немецкий промышленник из Дармштадта, вдохнул в старую проблему новую жизнь. Семья Вольфскелей славилась своим богатством и покровительством искусствам и наукам, и Пауль не был исключением. В университете он изучал математику и хотя свою жизнь Пауль посвятил строительству империи семейного бизнеса, все же он поддерживал контакт с профессиональными математиками и продолжал на любительском уровне заниматься теорией чисел. В частности, Вольфскель не отказался от мысли найти доказательство Великой теоремы Ферма.
Вольфскель отнюдь не был одаренным математиком, и ему не было суждено внести заметный вклад в поиски доказательства Великой теоремы Ферма. Но цепочка неординарных событий привела к тому, что его имя оказалось навсегда связанным с теоремой Ферма и вдохновило тысячи людей заняться поиском ее доказательства.
История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.
Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.
Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.
Вольфскель разорвал свои прощальные письма и переписал свое завещание в свете случившегося в ту ночь. После его смерти, последовавшей в 1908 году, завещание было оглашено и повергло семью Вольфскеля в шок: выяснилось, что Пауль завещал значительную часть своего состояния в качестве премии тому, кто сумеет доказать Великую теорему Ферма. Премия в 100000 марок (более 1 000 000 фунтов стерлингов в современных масштабах) была той суммой, которую Вольфскель счел своим долгом уплатить в награду за головоломную проблему, спасшую ему жизнь. Деньги были положены на счет Королевского научного общества Гёттингена, которое в том же году официально объявило о проведении конкурса на соискание премии Вольфскеля: