Кроме этих двадцати, в природных организмах известно около 300 других аминокислот (примерно 150 аминокислот имеется у человека), находящихся в разных клетках в свободном состоянии или в составе низкомолекулярных соединений. Некоторые из них играют исключительно важную роль.

Аминокислоты способны вступать в реакцию поликонденсации и формировать полипептидную цепочку. Образующаяся при этом —CO – NH-связь называется пептидной связью.

Условно к белкам относят полипептиды, состоящие из 50 или более аминокислотных остатков. При меньшем числе аминокислот вещества называются пептидами. Многие гормоны и антибиотики являются пептидами, состоящими из 2–20 аминокислотных остатков.

В молекуле белка может содержаться до нескольких тысяч аминокислот. Специфичность белков определяется набором используемых аминокислот, последовательностью их расположения в полипептидной цепочке и специфичностью укладки этой цепочки. Некоторые белки состоят из нескольких полипептидных цепей, соединенных вместе. Часто такие полипептидные цепи удерживаются небелковым компонентом. Наличие небелкового компонента характерно для группы сложных белков (гликопротеины, нуклеопротеины, липопротеины, гемоглобины и др.). Простые белки состоят только из полипептидов.

Белки в организме выполняют чрезвычайно многообразные функции. Большинство важнейших биохимических процессов осуществляется белками. Они играют ключевую роль в реализации процессов дыхания, движения, иммунитета, входят в состав большинства клеточных и тканевых структур.

Особо следует отметить каталитическую роль белков, поскольку почти все ферменты (биологические катализаторы) являются белками. Каждый фермент катализирует только одну реакцию или действует только на один тип связи. Обычно ферменты представляют собой сложные белки с небелковой частью – коферментом. Многие витамины являются предшественниками коферментов, в чем и заключается их биологическое значение.

2.2. Нуклеиновые кислоты

Нуклеиновые кислоты обеспечивают хранение и воспроизведение наследственной информации. Этим определяется их фундаментальное значение для жизни на Земле.

Нуклеиновые кислоты – это полимеры, мономерами которых являются нуклеотиды. Нуклеотид включает в себя азотистое основание, углевод и остаток фосфорной кислоты (рис. 2.2).

Антропология и концепции биологии - _04.jpg

Рис. 2.2. Структура нуклеотида

В природе встречаются два вида нуклеиновых кислот: ДНК и РНК.

Дезоксирибонуклеиновая кислота

Дезоксирибонуклеиновая кислота (ДНК) является местом хранения генетической информации организмов, поэтому можно сказать, что это «самая главная молекула». Молекула ДНК состоит из двух полинуклеотидных цепей, спирально закрученных одна относительно другой.

В составе нуклеотидов ДНК встречаются 4 типа азотистых оснований: А аденин; Т тимин; Г гуанин; Ц цитозин.

Углевод – дезоксирибоза.

В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями между дезоксирибозой одного и остатком фосфорной кислоты другого нуклеотида. Две полипептидные цепочки объединяются в единую молекулу ДНК при помощи водородных связей между азотистыми основаниями нуклеотидов разных цепей. Соединены азотистые основания по принципу комплементарности: аденин с тимином, гуанин с цитозином.

Антропология и концепции биологии - _05.jpg

Принцип комплементарности – это один из фундаментальных законов природы, определяющий механизм передачи наследственной информации.

Хотя в молекуле ДНК всего 4 типа разных нуклеотидов, благодаря различной их последовательности и огромному числу (до нескольких десятков тысяч) в полинуклеотидной цепочке достигается невероятное разнообразие этих молекул.

Рибонуклеиновая кислота

Молекулы рибонуклеиновой кислоты (РНК), несмотря на их разнообразие, построены по общим структурным принципам. Они состоят из одной полинуклеотидной цепочки, значительно более короткой, чем цепочка ДНК. В нуклеотидах имеются 4 типа азотистых оснований, из которых специфичным для РНК является урацил: А аденин; У урацил; Г гуанин; Ц цитозин.

Углевод – рибоза.

В клетке имеется несколько типов РНК, из которых основными являются три.

Информационная (и-РНК), или матричная (м-РНК). Переносит информацию о структуре белка с ДНК на рибосомы – место непосредственного синтеза полипептидной цепочки. Каждый белок клетки кодируется своей и-РНК.

Рибосомальная (р-РНК). Входит в состав рибосом. Помимо структурной функции, принимает непосредственное участие в синтезе полипептидной цепочки. Этот тип составляет 85 % всей РНК клетки.

Транспортная (т-РНК). Переносит аминокислоты к месту синтеза белков на рибосомы. Каждой аминокислоте соответствует своя т-РНК, которая имеет специфическую петлевую структуру (форма «клеверного листа»). Центральная петля молекулы содержит антикодон – триплет нуклеотидов, определяющий специфичность данной т-РНК и ее соответствие определенной аминокислоте.

Свободные нуклеотиды

Не только нуклеиновые кислоты, но и свободные нуклеотиды и их производные играют важную роль в жизни клетки. Центральную роль в энергетическом обмене клетки играет аденозинтрифосфорная кислота (АТФ), имеющая три остатка фосфорной кислоты (рис. 2.3). Все виды активности организмов (движение, синтез, деление и др.) происходят за счет энергии, высвобождаемой при гидролизе АТФ. Эта энергия запасается в высокоэнергетических (макроэргических) связях между остатками фосфорной кислоты.

Антропология и концепции биологии - _06.jpg

Рис. 2.3. Структура аденозинтрифосфорной кислоты

Гидролиз любой из двух макроэргических связей приводит к выделению энергии. АТФ чрезвычайно быстро обновляется. У человека каждая молекула АТФ расщепляется и вновь восстанавливается более 2400 раз в сутки.

Из нуклеотидов построены и некоторые другие важнейшие молекулы клетки: циклический аденозинмонофосфат (цАМФ) – одна из основных сигнальных молекул клетки, кофермент А (СоА), играющий ключевую роль в обмене веществ, никотинамидадениндинуклеотид (НАД) и флавинадениндинуклеотид (ФАД) – универсальные переносчики электронов и др. Структуру НАД, ФАД и СоА можно представить в общем виде (рис. 2.4). Предшественниками радикала у этих соединений являются водорастворимые витамины (РР, В2, В3), что объясняет их незаменимость в организме.

Антропология и концепции биологии - _07.jpg

Рис. 2.4. Общая структура некоторых нуклеотидсодержащих молекул

2.3. Обмен веществ и энергии

Вся совокупность химических реакций, протекающих в живых организмах, называется обменом веществ, или метаболизмом. В результате этих реакций энергия, запасенная в химических связях, переходит в другие формы, т. е. обмен веществ всегда сопровождается обменом энергии. Первичным источником энергии для всего живого на Земле служит Солнце.

Многие организмы имеют уникальные метаболические пути, однако наиболее поразительно то общее, что присуще процессам метаболизма в живой природе. Несмотря на величайшее разнообразие живых организмов, отчетливо проявляется единство этих процессов. Выделяют две группы процессов метаболизма.