Большинство продуктов питания содержит белок. Богаты белком мясо, рыба, сыр, творог, яйца, горох, орехи. Особенно важны животные белки молодому растущему организму. Недостаток полноценных белков в пище приводит к замедлению роста. В сутки человеку необходимо съедать с пищей 100–120 г белка.

Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак, который в печени превращается в мочевину. Конечные продукты обмена белков выводятся из организма с мочой, по?том и в составе выдыхаемого воздуха.

9. Органические вещества. Нуклеиновые кислоты

Вспомните!

Почему нуклеиновые кислоты относят к гетерополимерам?

Что является мономером нуклеиновых кислот?

Какие функции нуклеиновых кислот вам известны?

Какие свойства живого определяются непосредственно строением и функциями нуклеиновых кислот?

В 1868 г. швейцарский врач и биохимик Иоганн Фридрих Мишер выделил из ядер погибших лейкоцитов вещество, обладающее кислыми свойствами. Учёный назвал это вещество нуклеином (от лат. nucleus – ядро), считая, что оно содержится только в ядрах клеток. Позднее эти органические соединения были обнаружены также в цитоплазме, митохондриях, пластидах, но данное им название – нуклеиновые кислоты – сохранилось.

Значение нуклеиновых кислот в клетке чрезвычайно велико. Особенность их строения позволяет им выполнять функции хранения, реализации и передачи наследственной информации, т. е. практически определять основные свойства живого. Поэтому изучение структуры нуклеиновых кислот очень важно для понимания принципов функционирования живых организмов.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), присутствующие во всех клетках. Исключением являются вирусы – неклеточная форма жизни, одни из которых содержат исключительно РНК, а другие – только ДНК.

Дезоксирибонуклеиновая кислота (ДНК). В середине XX в., когда роль ДНК в передаче признаков из поколения в поколение уже была доказана, структура и организация этих биополимеров была окончательно ещё неясна. Было известно, что молекулы ДНК состоят из мономеров – нуклеотидов, каждый из которых содержит остаток фосфорной кислоты, сахар – дезоксирибозу и одно из четырёх азотистых оснований – аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц); т. е. существует четыре типа нуклеотидов (рис. 25). Но вопрос о том, есть ли какая – нибудь закономерность в расположении этих мономеров в цепи ДНК, оставался открытым.

В начале 50-х гг. XX в. профессор биохимии Колумбийского университета Эрвин Чаргафф определил состав ДНК с гораздо большей точностью по сравнению с предыдущими исследованиями. Он обнаружил, что содержание четырёх типов оснований в ДНК вовсе не соответствует соотношению 1:1:1:1, как предполагали ранее. Особенно поразило исследователя то, что количество аденина (А) всегда было равно количеству тимина (Т), а содержание гуанина (Г) всегда было равно содержанию цитозина (Ц). Это не могло быть простым совпадением. Например, в ДНК человека оказалось 30 % А, 30 % Т, 20 % Г и 20 % Ц. Причём выяснилось, что состав ДНК клеток качественно и количественно неодинаков у разных организмов, но идентичен в органах и тканях одного и того же организма. Это ещё раз подтверждало, что именно ДНК является химической основой наследственности.

Биология. Общая биология. Базовый уровень. 10 класс - i_029.jpg

Рис. 25. Общая формула нуклеотида (А) и четыре типа нуклеотидов ДНК (Б)

Эта закономерность соотношения количества аденина и тимина (А–Т) и гуанина и цитозина (Г–Ц) получила название правило Чаргаффа и послужила ключом к разгадке структуры ДНК.

В 1953 г. физик Ф. Крик и генетик Дж. Уотсон, работавшие в лаборатории Кембриджского университета, расшифровали пространственную структуру ДНК. Оказалось, что дезоксирибонуклеиновая кислота состоит из двух параллельных полинуклеотидных цепей, образующих правозакрученную двойную спираль. Но, пожалуй, самым интересным свойством этой структуры оказалась комплементарность (взаимодополнительность) обеих цепей: напротив основания А одной полинуклеотидной цепи в другой цепи всегда стоит Т, напротив Т–А, напротив Г–Ц, а напротив Ц–Г. Это строгое соответствие объяснило закономерность, открытую Чаргаффом. Цепи ДНК не просто располагаются параллельно друг другу, между членами пар А–Т и Г–Ц образуются водородные связи, которые удерживают цепи вместе и обеспечивают правильное расположение мономеров (рис. 26). Именно благодаря этим связям ДНК является единственной молекулой, способной к самоудвоению.

Но почему именно А–Т и Г–Ц? Почему не могут располагаться друг напротив друга, например, А и Ц? Дело в том, что в существующих комбинациях основания оптимально «подходят» друг другу: А соединяется с Т двумя водородными связями, а Г с Ц – тремя. Одинаковые по размеру основания Ц и Т гораздо меньше оснований Г и А. Пара Т–Ц была бы слишком мала, а А–Г – велика, и спиральная «лестница» ДНК искривилась бы, имея то слишком длинные, то слишком короткие «перекладины».

Биология. Общая биология. Базовый уровень. 10 класс - i_030.jpg

Рис. 26. Образование водородных связей между комплементарными основаниями двух цепей ДНК

Функции ДНК. Выделяют три основные функции ДНК.

Хранение наследственной информации. Порядок расположения нуклеотидов в молекуле ДНК определяет порядок расположения аминокислот в молекулах белков, т. е. их первичную структуру. Различия между организмами определяются различиями в их белковом составе. Именно белки формируют свойства клетки и организма в целом. Поэтому молекулы ДНК, в которых с помощью генетического кода (§ 13) зашифрована информация о белках, по сути, содержат информацию о всех свойствах и признаках организма. Участок молекулы ДНК, кодирующий первичную структуру одной полипептидной цепи, называют геном.

Передача наследственной информации следующему поколению. Эта функция осуществляется благодаря способности ДНК к удвоению (редупликации) (рис. 27). Специальный фермент раскручивает молекулу ДНК, водородные связи между основаниями разрываются и цепи расходятся. Затем на каждой цепи ДНК фермент ДНК-полимераза по принципу комплементарности строит новую цепь. В итоге образуются две совершенно идентичные молекулы ДНК, в каждой из которых одна цепь является материнской, так называемой матричной, а вторая – дочерней. Такой способ редупликации называется полуконсервативным. В дальнейшем в процессе деления образовавшиеся молекулы ДНК распределяются между дочерними клетками, обеспечивая точную передачу наследственной информации.

Биология. Общая биология. Базовый уровень. 10 класс - i_031.jpg

Рис. 27. Редупликация ДНК

Передача генетической информации из ядра в цитоплазму. Белок синтезируется в цитоплазме клетки, а информация о его структуре хранится в ДНК ядра. Следовательно, нужен некий посредник, передающий информацию от ДНК к месту синтеза белка. В роли такого посредника выступает информационная РНК, которая синтезируется по принципу комплементарности на одной из цепей ДНК, используя в качестве матрицы определённый участок – ген. Этот процесс называют транскрипцией (от лат. transcriptio – переписывание) (§ 13).

Рибонуклеиновые кислоты (РНК). РНК, так же как и ДНК, является биополимером, состоящим из четырёх типов мономеров – нуклеотидов (рис. 28). Нуклеотиды ДНК и РНК очень похожи, хотя и нетождественны. Мономеры РНК содержат остаток фосфорной кислоты, сахар – рибозу и азотистое основание. Причём три азотистых основания такие же, как и в ДНК, – аденин (А), гуанин (Г) и цитозин (Ц), а вместо тимина (Т) в РНК присутствует близкое ему по строению азотистое основание урацил (У).