Думают ли животные? - i_030.png
Рис. 30. Фазы нахождения обходного пути молодой собакой

Простейшие задачи подобного рода показывают, что собаки чрезвычайно отличаются друг от друга. Некоторые из них уже при второй попытке сразу же бегут по обходному пути. Другим необходима более или менее длительная тренировка, прежде чем они освоят кратчайший путь к цели. Встречаются и такие, которые уже при самом первом испытании ведут себя правильно и, кажется, вообще не нуждаются в тренировке или научении. В этом случае наверняка исключить случайность мы не можем, равно как не можем сказать, что у данной собаки нет опыта встречи с заборами, который она могла бы применить. Кроме того, в подобных испытаниях далеко не безразлична длина решетки. Нередко после удлинения решетки животное, только что продемонстрировавшее свою «интеллектуальность», ведет себя как и все другие собаки. Решетка должна быть целесообразной длины. Это понимает каждый, кто имеет опыт в обращении с собаками. Для овчарок, ротвейлеров и других крупных собак решетка должна быть больше, чем, например, для фокстерьеров. Наш рисунок представляет собой три упрощенные схемы, построенные на основе обработки результатов многочисленных испытаний. В практике экспериментирования одно испытание никогда полностью не совпадает с другим. Мы не будем говорить о причинах индивидуальных отличий, поскольку нас интересует характерное для всех опытов, а оно заключается в средних успехах возможно большего числа животных.

Итак, попытаемся четко представить себе своеобразие опытов, связанных с поиском обходного пути. Их называют еще опытами с препятствиями. Скоро нам придется снова вернуться к ним. Решетки и ящики с открывающимися крышками, а также ящики с защелками служат препятствием, которое не позволяет животному непосредственно достичь цели. Во всех примерах можно видеть испробование животным возможных действий, причем успешные запоминались, а неудачные были забыты. Теперь мы знаем, что в этом и заключается научение животных, то есть мы с полным основанием можем подтвердить старую точку зрения, что оно происходит путем проб и ошибок. Между тем недавно появившаяся наука кибернетика позволяет нам не только по-новому взглянуть на некоторые биологические факты, но и лучше, глубже понять оцениваемое.

Научение у животных с точки зрения кибернетики

Что такое кибернетика? Исходя из наших нужд ее следует определить как учение о функциональных саморегулирующихся системах. Поскольку определение всегда абстрактно, покажем на простом примере, что имеется в виду.

Предположим, что наша рабочая или жилая комната отапливается газовой печью. При температуре 21 °C мы чувствуем себя нормально. Регуляторы в системе отопления позволяют нам, когда становится слишком жарко, уменьшать, а при снижении температуры увеличивать подачу газа. Если подачу газа приходится регулировать во время напряженного труда, то это мешает работе.

Между тем технически несложно соединить подачу газа с термометром. Термоизмерительный прибор соединяют с газопроводом таким образом, что при повышении температуры подача топлива уменьшается, а при понижении увеличивается. Так автоматизируют отопление помещений. Газ дает тепло, тепло действует на газ. Поэтому мы говорим об автоматизированной системе регулирования. В нашем очень простом примере эта система позволяет человеку не тратить никаких усилий на переключение отопительного устройства. На крупном промышленном предприятии, где приходится регулировать многое — температуру парогенераторов, скорость работы станков, давление в котлах и т. д., — может быть получена очень большая экономия рабочей силы.

Но вернемся к нашему примеру. Поскольку температура в помещении воспринимается каждым из нас индивидуально, создают такие регулирующие устройства, которые позволяют устанавливать желательную температуру. Кто любит сидеть в теплой комнате, установит регулятор на 23 °C, кто предпочитает более низкую температуру, поставит на 19 °C, а то и ниже. Автоматическое устройство будет поддерживать заданную температуру.

Что общего между работой автоматической системы и процессом обучения животных?

В ответ на этот вопрос разберем еще один простой пример. Поднимая гантель весом пять килограммов, новичок в тяжелой атлетике поначалу слишком слабо напрягает мышцы. Но затем он прикладывает большие усилия и поднимает гантель. При повторении упражнения он уже сразу правильно напрягает мышцы.

Как это оказалось возможным?

В начале каждого движения из мозга по нервам поступает указание мышцам — в нашем примере оно касается степени их напряжения. Удалось или не удалось выполнение движения, мозг узнает через другие нервные каналы. Это сообщение является принципиально важным в кибернетике обратным сообщением (или обратной связью). Само собой разумеется, что оно передается не словами, оно закодировано (вроде телеграммы, передающейся при помощи азбуки Морзе), то есть состоит из определенной последовательности отдельных импульсов. В рассматриваемом нами примере первое обратное сообщение означает, что напряжение мышц недостаточно. Сразу же следует указание повысить напряжение. Теперь, когда оно стало достаточным, в мозг поступает соответствующее обратное сообщение. Там оно фиксируется, иначе говоря, необходимое для поднятия гантели напряжение запоминается. Это напряжение является расчетной величиной, на которую устанавливается система регулирования мозг — мышца — мозг. В следующий раз, поднимая гантель весом пять килограммов, человек уже без какого-либо раздумья применяет наиболее пригодное для этого усилие мышц. Две части — мозг и мышцы — образуют саморегулирующуюся систему. Безусловно, она зависит и от других процессов, происходящих в теле. Скорее всего она является подсистемой в очень большой и сложной общей системе.

Думают ли животные? - i_031.png
Рис. 31. Кибернетическая блок-схема для пояснения сообщения и обратного сообщения. (Мозг получает сообщение об «успехе» только при действии I)

Наверняка многим хорошо известен цирковой номер, позволяющий показать отрегулированное на расчетную величину отношение между мозгом и мышцами. Кому-нибудь предлагают поднять гантель, сделанную из картона и по своему цвету, форме и надписи «5 кг» разительно напоминающую металлическую гантель того же веса. На самом деле пустая картонная гантель весит всего несколько граммов. Человек видит ее и принимает за настоящую. Он наклоняется к муляжу, намереваясь поднять пятикилограммовую гантель, и его мышцы получают соответствующее сообщение: следует применить такое-то напряжение. Но оно, естественно, намного превышает действительно необходимое усилие — рука вместе с муляжом подлетает вверх, что поражает и действующее лицо и публику и вызывает смех.

Связанным с регулированием процессам, механизмам, аппаратам, мышцам или нервам дают в кибернетике как можно более общие обозначения и включают в схему. То, что принимается как действующее, например измерительный прибор, восприятие, поведение или процесс в мозге, заключают в рамку и называют блоком. Система, составленная таким образом, называется блок-схемой.

Попробуем при помощи рис. 31 детальнее познакомиться с блок-схемой. Восприятие животного, указанное на рисунке слева, может относиться к чему угодно: мешающей решетке, ручке двери, крышке ящика. Воспринятое через зрительный канал нервной системы сообщается мозгу. Из него поступает обратное сообщение в орган восприятия, обычно глаз. Передача сигналов от воспринимающего органа к мозгу и обратно показана на рисунке внешней кривой. Это делает содержание восприятия интересным: либо привлекательным, либо сулящим опасность. Нередко только после обратного сообщения на окружающем животное фоне что-то начинает проясняться; по-видимому, это можно отнести к защелке, которой занимался енот.

Но в этой схеме должны быть учтены столь часто упоминавшиеся действия животного. На нашем рисунке для простоты показаны только три из них: одно успешное действие I (сплошная линия) и два безуспешных (II и III, штриховая линия). Род выполненного движения и его результат также сообщаются мозгу. Идущее оттуда обратное сообщение к органам движения (мышцам) при выгодном для животного поведении действует поощрительно или благоприятно, при напрасном — сдерживающе, тормозяще. Таким образом, отношение между моторикой (органами движения), с одной стороны, и мозгом — с другой, можно рассматривать как контур регулирования.