Геохимические процессы, грубая канва которых приведена выше, совершаются на протяжении многих тысяч и миллионов лет. Понятно, что они испытывают очень сильное влияние биотического круговорота, интенсивность процессов в котором несравненно выше. Растительность, почва и особенно микроорганизмы вносят заметный вклад в геохимические явления, по сути превращая их в биогеохимические. В.И.Вернадский, [1965] в одной из последних работ писал, что процессы выветривания, в частности резко выраженные в биосфере, всегда биогенны и биокосны; микроскопическая жизнь в них играет ведущую роль.
Глава 5. Живая природа. Нехватка вещества и его циклы
... Вся поверхность шара состояла из капель, плотно сжатых между собой. И капли эти все двигались, перемещались и то сливались из нескольких в одну, то из одной разделялись на многие. Каждая капля стремилась разлиться, захватить наибольшее пространство, но другие, стремясь к тому же, сжимали ее, иногда уничтожали, иногда сливались с нею.
— Вот жизнь,— сказал старичок-учитель.
5.1. Главная ячейка жизни — клетка
Определение жизни с позиций функционального подхода (метаболизм, размножение, расселение в пространстве) можно дать в следующей форме [Печуркин, 1982]: это открытая система, развивающаяся на основе матричного автокатализа под влиянием внешнего потока энергии, ограниченная по веществу и использующая циклы реакций.
Что такое матричный автокатализ, известно из школьного курса биологии, и мы не будем его описывать.
Энергетические траты живой клетки осуществляются через запасание энергии в молекуле аденозин-трифосфата (АТФ) и передачу ее соответствующим «работающим» молекулам (подробнее позже).
Полученную энергию клетка расходует на поддержание активности и многочисленные синтезы. Несмотря на сложность и большое разнообразие органических молекул и клеточных структур, все они строятся из малого набора простых соединений-предшественников, поступающих из внешней среды. Начало синтезов идет от двуоксида углерода, воды и минеральных солей. На первом этапе они превращаются в промежуточные продукты, из которых на втором этапе создаются основные строительные блоки и среди них аминокислоты и мононуклеотиды. На третьем этапе происходит сборка четырех типов макромолекул из строительных блоков. На следующих этапах образуются функциональные надмолекулярные комплексы, которые на высшем уровне организации объединяются в целостный организм — клетку как основную (и единственную) ячейку жизни.
Давая краткое описание работы клетки, подчеркнем важнейшую особенность жизни. «Поразительным открытием молекулярной биологии за последние три десятилетия» назвала обнаруженную всеобщность фундаментальных химических процессов в живой клетке известная исследовательница эволюции жизни, профессор Бостонского университета Л. Маргелис, [1983]. Действительно, функциональное единство самых существенных биологических феноменов не может не поражать. Так, генетический код, определяющий соотношение между последовательностями нуклеотидов и аминокислот в белке, универсален. По существу, он одинаков у всех изученных организмов — от древнейших бактерий до человека.
Связывание информационных РНК, комплементарных генной ДНК, с рибосомами при синтезе белков, по-видимому, тоже универсально. Наконец, энергетическая валюта — АТФ — также едина для представителей всех царств живого мира.
Остановимся еще на одной немаловажной особенности клеточной организации. Это — энергетическая экономичность генетического кода. Одним из ее проявлений может служить корреляция между распространенностью аминокислоты в белках и энергетической стоимостью ее синтеза. Из статистического анализа более 600 белков вирусов, микроорганизмов, растений и животных удалось достоверно установить, что чем выше затраты АТФ на биосинтез данной аминокислоты, тем реже входит она в состав белков. С этой точки зрения становится понятным явление незаменимости аминокислот, т. е. неспособности некоторых из них синтезироваться в организмах высших животных и человека. (Поэтому нам и требуется животный белок, содержащий эти аминокислоты, в свою очередь полученные от растений.) Оказывается, что энергетическая эффективность биосинтеза белка у организмов, не синтезирующих, а потребляющих извне эти аминокислоты, на целых 20 % выше, чем у организмов, которые синтезируют все необходимые аминокислоты. Кроме того, для синтеза незаменимых аминокислот требуется гораздо большее число ферментов, чем для синтеза заменимых, что также связано с дополнительными тратами вещества и энергии.
Рис. 5. Сравнение структур прокариотной (а) и эукариотной (б) клеток [Маргелис, 1983].
а: 1 — жгутик, 2 — клеточная мембрана, 3 — нуилеоид (генофор), 4 — малые рибосомы, 5 — нецеллюлозная стенка; б: 1 — пластида, 2 — ядерная мембрана, 3 — большие рибосомы, 4 — кинетохор, 5 — хромосома, 6 — эндоплазматический ретикулум, 7 — ундулиподия 9 + 2 (микротрубочки), 8 — кинетосома 9 + 0, 9 — клеточная мембрана, 10 — клеточная стенка, 11 — митохондрии.
Выделяют две главные таксономические единицы — надцарства: прокариоты и эукариоты.
Название «прокариоты» происходит от латинского слова pro (вперед, вместо) и греческого káryon (ядро) (рис. 5). Клетки прокариот не содержат ядра с мембраной, их кольцевая ДНК располагается в клетке свободно. Слабо выражено деление пространства клетки на отдельные части. Ограничено количество клеточных компонентов — органелл. Отсутствуют пластиды и митохондрии, отвечающие за энергетические превращения в более высокоорганизованных клетках. Клеточная стенка состоит из гетерополимерного вещества — муреина, которое не встречается у других групп организмов. Аппараты движения (жгутики) либо отсутствуют, либо относительно просто устроены. Наконец, размеры прокариотных клеток очень малы, в среднем единицы микрометров (мкм), что находится на грани разрешающей способности светового микроскопа.
Простота структуры у прокариот компенсируется высокой лабильностью и многообразием метаболических процессов. Способ питания может быть как автотрофным, так и гетеротрофным. Прокариоты питаются путем всасывания, или абсорбции, питательных веществ через клеточную стенку. Обычный тип размножения бесполый, простое деление пополам, однако обмен генетическим материалом иногда происходит при слиянии клеток за счет парасексуальных процессов.
Если прокариоты справедливо считаются первичными формами, возникшими в начале эволюционного пути, то развившиеся из них эукариоты представляют собой следующую ступень эволюции (см. рис. 5).
Клетки эукариот имеют выраженное ядро, окруженное мембраной. Генетический материал (ДНК) связан с белком в отдельных образованиях — хромосомах. Имеется целый набор органелл клетки: вакуоли, гранулы, нитевидные и палочковидные структуры. Энергетические процессы локализованы в митохондриях. Хорошо развита эндоплазматическая мембранная система, несущая множество пузырьков и цистерн. Мелкие нуклеопротеидные частицы — рибосомы, в которых производится синтез белков, либо связаны с мембранами эндоплазматической сети, либо взвешены в цитоплазме. Обычный тип размножения — через половой процесс с чередованием слияния ядра в зиготе и редукционного деления с образованием половых клеток — гамет. Возможны и неполовые способы размножения: простым делением, как у прокариот, почкованием, образованием спор и т. д., что наиболее часто встречается у микроорганизмов. Жгутики, или реснички, если они есть, имеют более сложное, чем у прокариот, строение. Питание эукариот может быть автотрофным и гетеротрофным: абсорбционным, как у прокариот, или голозойным, при котором пища заглатывается и перерабатывается внутри организма.