Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе.

Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме — о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным.

Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.

Изменим несколько данную схему и будем рассуждать так: если есть первое, то имеется второе; имеет место второе; значит, есть и первое.

Например:

Если идёт дождь, земля мокрая; земля мокрая; следовательно, идёт дождь.

Этот вывод, очевидно, неправилен. Верно, что всякий раз, когда идёт дождь, земля мокрая. Но из этого условного утверждения и того факта, что земля мокрая, вовсе не вытекает, что идёт дождь. Земля может оказаться мокрой и без дождя, её можно намочить, скажем, из шланга, она может быть мокрой после таяния снега и т.д.

Ещё один пример рассуждения по последней схеме подтвердит, что она способна приводить к ложным заключениям:

Если у человека повышенная температура — он болен; человек болен; значит, у него повышенная температура.

Однако такое заключение не вытекает с необходимостью: люди с повышенной температурой действительно больны, но далеко не у всех больных такая температура.

Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведёт к истинному заключению.

Этим объясняется тот огромный интерес, который логика проявляет к правильным выводам. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т.п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно даёт стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения.

Если посылки, или хотя бы одна из них, являются ложными, правильное рассуждение может давать в итоге как истину, так и ложь. Неправильные рассуждения могут от истинных посылок вести как к истинным, так и к ложным заключениям. Никакой определённости здесь нет. С логической необходимостью заключение вытекает только в случае правильных, обоснованных выводов.

Логика занимается, конечно, не только связями утверждений в правильных выводах, но и другими проблемами. В числе последних — смысл и значение выражений языка, различные отношения между понятиями, определение понятий, вероятностные и статистические рассуждения, софизмы и парадоксы и др. Но главная и доминирующая тема формальной логики — это, несомненно, анализ правильности рассуждения, исследование «принудительной силы речей», как говорил основатель этой науки — древнегреческий философ и логик Аристотель.

2. ЛОГИЧЕСКАЯ ФОРМА

Формальная логика, как уже говорилось, отделяет правильные способы рассуждения от неправильных и систематизирует первые.

Своеобразие формальной логики связано прежде всего с её основным принципом, в соответствии с которым правильность рассуждения зависит только от его логической формы.

Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.

Основной принцип формальной логики предполагает — и это следует специально подчеркнуть, что каждое наше рассуждение, каждая мысль, выраженная в языке, имеет не только определённое содержание, но и определённую форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть разделены. Содержание мысли не оказывает никакого влияния на правильность рассуждений, и поэтому от него следует отвлечься. Для оценки правильности мысли существенной является лишь её форма. Её необходимо выделить в чистом виде, чтобы затем на основе такой «бессодержательной» формы решить вопрос о правильности рассматриваемого рассуждения.

Как известно, все предметы, явления и процессы имеют как содержание, так и форму. Наши мысли не являются исключением из этого общего правила. То, что они обладают определённым, меняющимся от одной мысли к другой содержанием, известно каждому. Но мысли имеют также форму, что обычно ускользает от внимания.

Смысл понятия логической формы лучше всего раскрыть на примерах.

Сравним два высказывания:

«Все вороны — птицы»,

»Все шахматисты — гроссмейстеры».

По содержанию они совершенно различны, к тому же первое является истинным, а второе ложным. И тем не менее сходство их несомненно. Это сходство, а точнее говоря, тождество, в их строении, форме. Чтобы выявить такое сходство, нужно отвлечься от содержания высказываний, а значит и от обусловленных им различий. Оставим поэтому в стороне ворон и шахматистов, птиц и гроссмейстеров. Заменим все содержательные компоненты высказываний латинскими буквами, скажем S и Р, не несущими никакого содержания. В итоге получим в обоих случаях одно и то же:

«Все S есть Р ».

Это и есть форма рассматриваемых высказываний. Она получена в результате отвлечения от конкретного их содержания. Но сама эта форма имеет все-таки некоторое содержание. Из неё мы узнаем, что у всякого предмета, обозначаемого буквой S, есть признак, обозначаемый буквой Р. Это не особенно богатое, но все-таки содержание, «формальное содержание».

Этот простой пример хорошо показывает одну из особенностей подхода формальной логики к анализу рассуждений — его высокую абстрактность.

В самом деле, все началось с очевидной мысли, что утверждения о воронах, которые являются птицами, и о шахматистах, сплошь являющихся гроссмейстерами, совершенно различны. И если бы не цели логического анализа, на этом различии мы и остановились бы, не увидев ничего общего между высказываниями «Все вороны — птицы» и «Все шахматисты — гроссмейстеры».

Отвлечение от содержания и выявление формы привело нас, однако, к прямо противоположному мнению: рассматриваемые высказывания имеют одну и ту же логическую форму и, следовательно, они полностью совпадают. Начав с мысли о полном различии высказываний, мы пришли к выводу об абсолютной их тождественности.

Рассмотрим далее два более сложных высказывания:

«Если число делится на 2, то оно чётное»,

»Если сейчас ночь, то сейчас темно».

Для выявления логической формы этих высказываний подставим вместо их содержательных компонентов слова «первое» и «второе», не несущие конкретного содержания. В результате получим, что оба эти высказывания имеют одну и ту же логическую форму:

«Если первое, то второе», т.е. каждое из них устанавливает условную связь, выражаемую словами «если, то», между двумя ситуациями, обозначаемыми словами «первое» и «второе». Если вместо последних слов использовать буквенные переменные, скажем, А и В, получим:

«Если А, то В ».

Это и есть логическая форма данных сложных высказываний.

Легко понять, что такое пространственная форма. Скажем, форма здания характеризует не то, из каких элементов оно сложено, а только то, как эти элементы связаны друг с другом. Здание одной и той же формы может быть и кирпичным, и железобетонным.

Достаточно просты также многие непространственные представления о форме. Говорят, например, о форме классического романа, предполагающего постепенную завязку действия, кульминацию и, наконец, развязку. Все такие романы, независимо о их содержания, сходны в своей форме, способе связи содержательных частей.

В сущности, не намного более сложным для понимания является и понятие логической формы. Наши мысли слагаются из некоторых содержательных частей, как здание из кирпичей, блоков, панелей и т.п. Эти «кирпичики» мысли определённым образом связаны друг с другом. Способ их связи и представляет собой форму мысли.

Для выявления формы надо отвлечься от содержания мысли, заменить содержательные её части какими-нибудь пробелами или буквами. Останется только связь этих частей. В обычном языке она выражается словами: «все … есть …», «некоторые … есть…», «если…, то…», «… и …», «… или …», «неверно, что …» и т.п.