ИТТРИЙ И ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ. Развитию массового производства цветных телевизоров долго препятствовала исключительная сложность получения светящихся покрытий для их экранов. Люминофоры трех цветов нужно нанести так, чтобы луч каждой из трех электронных пушек возбуждал лишь частицы одного цвета. А ведь частицы эти — их на экране более миллиона — должны быть рационально «перемешаны». Отсюда масса требований к веществам, дающим цветное свечение экрана. Сейчас за рубежом чаще всего применяют красные люминофоры на основе соединений иттрия. Японские специалисты используют окись иттрия, активированную европием, в других странах распространен ванадиевокислый иттрий, опять-таки активированный европием. Для выпуска миллиона трубок цветных телевизоров нужно, по японским данным, примерно 5 т чистой окиси иттрия. Так что цветное телевидение становится еще одним довольно крупным потребителем элемента № 39.

ИТТРИЙ И КЕРАМИКА. Несколько лет назад разработан новый жаропрочный материал циттрит. Это мелкозернистая циркониевая керамика, стабилизированная иттрием. Она обладает минимальной теплопроводностью и сохраняет свои свойства до 2200°C. Другой керамический материал, известный под названием иттрий-локс, — твердый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, и, кроме того, он хорошо пропускает инфракрасное излучение. Поэтому его можно использовать для изготовления инфракрасных «окоп» специальной аппаратуры и ракет, а также вставлять в смотровые «глазки» высокотемпературных печей. Плавится иттрий-локс лишь при 2204°C.

ДВАДЦАТЬ ПРОТИВ ОДНОГО. На один стабильный изотоп иттрия 89Y приходятся двадцать радиоактивных с массовыми числами от 81 до 102, исключая еще не полученный иттрий-101. Самый долгоживущий из радиоактивных изотопов элемента № 39 — иттрий-88 с периодом полураспада около 105 дней.

ВАЖНЫЙ ЛАЗЕРНЫЙ МАТЕРИАЛ. Как известно, первым источником лазерного излучения (1960 г.) был кристалл искусственного рубина — Al2O3, активированный ионами Cr3+. Однако с тех пор появились сотни других лазерных материалов — кристаллических, стеклообразных, газообразных, жидких… Источниками лазерного излучения стали даже некоторые вещества в четвертом — плазменном состоянии. Но не утратили значения и кристаллы, в том числе кристаллы искусственно выращиваемого иттрий-алюминиевого граната Y3Al2(AlO4)S. Между прочим, небольшой примесью окиси кобальта эти искусственные кристаллы можно окрасить в небесно-голубой цвет и получить тем самым голубой карбункул, описанный в знаменитом рассказе А. Конан Дойла. Ибо слова «гранат» и «карбункул» (камень) — синонимы.

Цирконий

Популярная библиотека химических элементов. Книга первая. Водород — палладий - i_146.png

В 1789 г. член Берлинской академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей.

Происхождение этого названия объясняют по-разному. Одни находят его истоки в арабском слове «заркун», что значит минерал, другие считают, что слово «цирконий» произошло от двух персидских слов «цар» — золото и «гун» — цвет (из-за золотистой окраски драгоценной разновидности циркона — гиацинта).

Как получали и получают цирконий

Выделенное Клапротом вещество не было новым элементом, но было окислом нового элемента, который впоследствии занял в таблице Д. И. Менделеева сороковую клетку. Пользуясь современными символами, формулу вещества, полученного Клапротом, записывают так: ZrO2.

Через 35 лет после опытов Клапрота известнейшему шведскому химику Йенсу Якобу Берцелиусу удалось получить металлический цирконий. Берцелиус восстановил фторцирконат калия металлическим натрием:

K2[ZrF6] + 4Na → Zr + 2KF + 4NaF

и получил серебристо-серый металл.

Цирконий, образовавшийся в результате этой реакции, был хрупким из-за значительного содержания примесей. Металл не поддавался обработке и не смог найти практического применения. Но можно было предположить, что очищенный цирконий, подобно многим другим металлам, окажется достаточно пластичным.

В XIX и начале XX в. многие ученые пытались получить чистый цирконий, но все попытки долгое время заканчивались неудачей. He. помог испытанный алюмотермический метод, не привели к цели опыты, авторы которых стремились получить металлический цирконий из растворов его солей. Последнее объясняется в первую очередь высоким химическим сродством циркония к кислороду.

Для того чтобы можно было получить какой-либо металл электролизом из раствора его соли, этот металл должен образовывать одноатомные ионы. А цирконий таких ионов не образует. Сульфат циркония Zr(SO4)2, например, существует только в концентрированной серной кислоте, а при разбавлении начинаются реакции гидролиза и комплексообразования. В конечном счете получается

Zr(SO4)2 + H2O → (ZrO)SO4 + H2SO4.

В водном растворе гидролизуется и хлористый цирконий

ZrCl4 + H2O → ZrOCl2 + 2HCl.

Некоторые исследователи считали, что им удалось-таки получить цирконий электролизом растворов, но они были введены в заблуждение видом продуктов, осевших на электродах. В одних случаях это были действительно металлы, но не цирконий, а никель или медь, примеси которых содержались в циркониевом сырье; в других — внешне похожая на металл гидроокись циркония.

Лишь в 20-х годах нашего столетия (через 100 лет после того, как Берцелиус получил первые образцы циркония!) был разработан первый промышленный способ получения этого металла.

Это метод «наращивания», разработанный голландскими учеными ван Аркелем и де Буром. Суть его заключается в том, что летучее соединение (в данном случае тетрайодид циркония ZrI4) подвергается термическому распаду в вакууме и на раскаленной нити вольфрама откладывается чистый металл.

Этим способом был получен металлический цирконий, поддающийся обработке — ковке, вальцовке, прокатке — примерно так же легко, как медь.

Позже металлурги обнаружили, что пластические свойства циркония зависят главным образом от содержания в нем кислорода. Если в расплавленный цирконий проникнет свыше 0,7% кислорода, то металл будет хрупким из-за образования твердых растворов кислорода в цирконии, свойства которых сильно отличаются от свойств чистого металла.

Метод наращивания получил сначала некоторое распространение, но высокая стоимость циркония, полученного этим методом, сильно ограничивала области его применения. А свойства циркония оказались интересными. (О них ниже.) Назрела необходимость в разработке нового, более дешевого способа получения циркония. Таким методом стал усовершенствованный метод Кролля.

Метод Кролля позволяет получать цирконий при вдвое меньших затратах, чем по методу наращивания. Схема этого производства предусматривает две основные стадии: двуокись циркония хлорируется, а полученный четыреххлористый цирконий восстанавливается металлическим магнием под слоем расплавленного металла. Конечный продукт — циркониевая губка переплавляется в прутки и в таком виде направляется потребителю.

Двуокись циркония

Пока ученые искали способ получения металлического циркония, практики уже начали применять некоторые из его соединений, в первую очередь двуокись циркония. Свойства двуокиси циркония в значительной мере зависят от того, каким способом она получена. ZrO2, образующаяся при прокаливании некоторых термически нестойких солей циркония, нерастворима в воде. Слабо прокаленная двуокись хорошо растворяется в кислотах, но, сильно прокаленная, она становится нерастворимой в минеральных кислотах, исключая плавиковую.