Ниобий активно реагирует со многими неметаллами. С ним образуют соединения галогены, азот, водород, углерод, сера. При этом ниобий может проявлять разные валентности — от двух до пяти. Но главная валентность этого элемента 5+. Пятивалентный ниобий может входить в состав соли и как катион, и как один из элементов аниона, что свидетельствует об амфотерном характере элемента № 41.
Соли ниобиевых кислот называют ниобатами. Их получают в результате обменных реакций после сплавления пятиокиси ниобия с содой:
Довольно хорошо изучены соли нескольких ниобиевых кислот, в первую очередь метаниобиевой HNbO3, а также диниобаты и пентаниобаты (K4Nb2O7, K7Nb5O16∙mH2O). А соли, в которых элемент № 41 выступает как катион, обычно получают прямым взаимодействием простых веществ, например 2Nb + 5Cl2 → 2NbCl5.
Ярко окрашенные игольчатые кристаллы пентагалогенидов ниобия (NbCl5 — желтого цвета, NbBr5 — пурпурно-красного) легко растворяются в органических растворителях — хлороформе, эфире, спирте. Но при растворении в воде эти соединения полностью разлагаются, гидролизуются с образованием ниобатов:
Гидролиз можно предотвратить, если в водный раствор добавить какую-либо сильную кислоту. В таких растворах пентагалогениды ниобия растворяются, не гидролизуясь.
Ниобий образует двойные соли и комплексные соединения, наиболее легко — фтористые. Фторниобаты — так называются эти двойные соли. Они получаются, если в раствор ниобиевой и плавиковой кислот добавить фторид какого-либо металла.
Состав комплексного соединения зависит от соотношения реагирующих в растворе компонентов. Рентгенометрический анализ одного из этих соединений показал строение, отвечающее формуле K2NbF7. Могут образоваться и оксосоединения ниобия, например оксофторниобат калия K2NbOF5∙H2O.
Химическая характеристика элемента не исчерпывается, конечно, этими сведениями. Сегодня самые важные из соединений элемента № 41 — это его соединения с другими металлами.
Ниобий и сверхпроводимость
Удивительное явление сверхпроводимости, когда при понижении температуры проводника в нем происходит скачкообразное исчезновение электрического сопротивления, впервые наблюдал голландский физик Г. Камерлинг-Оннес в 1911 г. Первым сверхпроводником оказалась ртуть, но не ей, а ниобию и некоторым интерметаллическим соединениям ниобия суждено было стать первыми технически важными сверхпроводящими материалами.
Практически важны две характеристики сверхпроводников: величина критической температуры, при которой
происходит переход в состояние сверхпроводимости, и критического магнитного поля (еще Камерлинг-Оннес наблюдал утрату сверхпроводником сверхпроводимости при воздействии на него достаточно сильного магнитного поля).
Сейчас известно уже больше 2000 сверхпроводящих металлов, материалов и соединений, но подавляющее их большинство не пришло и видимо никогда не придет в технику либо из-за чрезвычайно низких величин критических параметров, о которых сказано выше, либо из-за неприемлемых технологических характеристик. Среди сверхпроводников, имеющих практическое значение, особенно популярны ниобий-титановые сплавы. Из них изготовлено большинство работающих в наши дни сверхпроводящих магнитов. Они пластичны, из них можно делать технические устройства и проводники сложных форм.
Как материал ленточных сверхпроводников ценен сплав ниобия с оловом Nb3Sn, станнид ниобия, открытый еще в 1954 г. Сверхпроводящий токонесущий элемент — шина со 150 000 жил — из станнида ниобия изготовлен в нашей стране. Подобные многожильные сверхпроводящие проводники намереваются использовать в новых термоядерных установках «Токомак-15».
Интерес для практики представляет еще одно интерметаллическое соединение ниобия — Nb3Ge. У тонкой пленки такого состава рекордно высокая критическая температура — 24,3 К. Правда, у литого Nb3Ge критическая температура — всего 6 К, да и технология приготовления сверхпроводящих элементов из этого материала достаточно сложна.
Довольно высокими значениями критической температуры обладают тройные сплавы: ниобий — германий — алюминий, а также некоторые интерметаллические соединения ванадия. И все же именно с ниобием и его соединениями связаны наибольшие надежды специалистов по сверхпроводникам.
Ниобий — металл
Металлический ниобий можно получить восстановлением его соединений, например хлорида ниобия или фторниобата калия, при высокой температуре:
Но прежде чем достигнуть этой в сущности последней стадии производства, ниобиевая руда проходит множество этапов переработки. Первый из них — обогащение руды, получение концентратов. Концентрат сплавляют с различными плавнями: едким натром или содой. Полученный сплав выщелачивают. Но растворяется он не полностью. Нерастворимый осадок и есть ниобий. Правда, он здесь еще в составе гидроокиси, не разделен со своим аналогом по подгруппе — танталом — и не очищен от некоторых примесей.
До 1866 г. не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия. Первым метод разделения этих чрезвычайно похожих элементов предложил Жан Шарль Галиссар де Мариньяк. Метод основан на разной растворимости комплексных соединений этих металлов и называется фторидным. Комплексный фторид тантала нерастворим в воде, а аналогичное соединение ниобия растворимо.
Фторидный метод сложен и не позволяет полностью разделить ниобий и тантал. Поэтому в наши дни он почти не применяется. На смену ему пришли методы избирательной экстракции, ионного обмена, ректификации галогенидов и др. Этими методами получают окисел и хлорид пятивалентного ниобия.
После разделения ниобия и тантала идет основная операция — восстановление. Пятиокись ниобия Nb2O5 восстанавливают алюминием, натрием, сажей или карбидом ниобия, полученным при взаимодействии Nb2O5 с углеродом; пентахлорид ниобия восстанавливают металлическим натрием или амальгамой натрия. Так получают порошкообразный ниобий, который нужно затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий- монолит получают методами порошковой металлургии, суть которой в следующем.
Из полученного металлического порошка под большим давлением (1 т/см2) прессуют так называемые штабики прямоугольного или квадратного сечения. В вакууме при 2300°C эти штабики спекают, соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом.
Монокристаллический пластичный ниобий получают методом бестигельной зонной электроннолучевой плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены!) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.
Как видите, путь ниобия от руды до металла в любом случае довольно долог, а способы производства сложны.
Ниобий и металлы
Рассказ о применении ниобия логичнее всего начать с металлургии, так как именно в металлургии он нашел наиболее широкое применение. И в цветной металлургии, и в черной.