Несмотря на распространенность в природе, этот элемент открыли сравнительно поздно. В 1825 г. выдающийся шведский химик и минералог Йенс Якоб Берцелиус сумел в двух реакциях выделить не очень чистый аморфный кремний в виде коричневого порошка. Для этого он восстановил металлическим калием газообразное вещество, известное ныне как тетрафторид кремния SiF4, и кроме того, провел такую реакцию: K2SiF6 + 4K → 6KF + Si.

Новый элемент был назван силицием (от латинского silex — кремень). Русское название этого элемента появилось спустя девять лет, в 1834 г., и благополучно дожило, в отличие, скажем, от «буротвора», до наших дней.

Кремний, как и углерод, образует различные аллотропические модификации. Кристаллический кремний так же мало похож на аморфный, как алмаз на графит. Это твердое вещество серостального цвета с металлическим блеском и гранецентрированной кристаллической решеткой того же типа, что у алмаза. Впрочем, аморфный кремний, как выяснилось, тоже не аморфный, а мелкокристаллический.

Первый промышленный способ производства кремния, изобретенный во второй половине XIX в. известным русским химиком Н. Н. Бекетовым, основан на восстановлении четыреххлористого кремния SiCl4 парообразным цинком. Технически чистый кремний (95–98% Si) сейчас получают главным образом восстановлением кремнезема в электрической дуге между графитовыми электродами. Используется до сих пор изобретенный еще в прошлом веке способ восстановления кремнезема коксом в электрических печах. Этот способ также дает технический кремний, нужный металлургии как раскислитель, связывающий и удаляющий из металла кислород, и как легирующая добавка, повышающая прочность и коррозионную стойкость сталей и многих сплавов на основе цветных металлов. Впрочем, здесь важно «не переборщить»: избыток кремния может привести к хрупкости.

Не отошел в прошлое и бекетовский способ получения кремния (в реакции между парами цинка и тетрахлоридом кремния — летучей бесцветной жидкостью с температурой кипения всего 57,6°С). Это один из способов получения высокочистого полупроводникового кремния, о котором определенно наслышаны читатели этой книги.

Полагают, что при абсолютном нуле идеально чистый и идеально правильный монокристаллический кремний должен быть идеальным электроизолятором. Но идеальная чистота так же недостижима, как и абсолютный нуль. В нашем случае это, что называется, к добру. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки — места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки (в микроколичествах; обычно это делается с помощью ионно-лучевых установок), в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой — электронной. Что значат для нас сегодня полупроводники, объяснять, вероятно, излишне. Расскажем лучше вкратце о способах получения полупроводникового кремния.

Один из этих способов упомянут выше. Заметим только, что реакцию высокочистых паров цинка с очень чистым четыреххлористым кремнием проводят при температуре 950°С в трубчатом реакторе, изготовленном из плавленого кварца. Элементный кремний образуется в виде игольчатых кристаллов, которые потом измельчают и промывают соляной кислотой, разумеется, тоже весьма чистой. Затем следует еще одна ступень очистки — зонная плавка, и лишь после нее поликристаллическую кремниевую массу превращают в монокристаллы.

Есть и другие реакции, в которых получают высокочистый полупроводниковый кремний. Это восстановление водородом трихлорсилана SiHCl3 или четыреххлористого кремния SiCl4 и термическое разложение моносилана, гидрида кремния SiH4 или тетраиодида SiJ4. В последнем случае разложение соединения происходит на разогретой до 1000°С танталовой ленте. Дополнительная очистка зонной плавкой следует после каждой из этих реакций.

В полупроводниковом кремнии содержание примесей крайне мало — 10–5—10–6% и даже меньше.

Кремнийорганика

Первое органическое соединение, содержащее кремний, было получено еще в 1845 г. в реакции этилового спирта с четыреххлористым кремнием: SiCl4 + 4C2H5OH → Si(OC2H5)4 + 4HCl. Но это не был первый синтез кремнийорганического соединения в том смысле, какой вкладывает в это понятие современная химическая номенклатура. Кремнийорганическими сейчас признают лишь те соединения, в которых есть связь углерод — кремний. Так что первое кремнийорганическое соединение — тетраэтилсилиций Si (C2H5)4 — было получено лишь в 1863 г.

Конечно, в то время никто не предполагал, что спустя 100 лет кремнийорганика разовьется в самостоятельную и важную ветвь химической науки, что кремнийорганические соединения, особенно полимерные, станут первостепенно важны для многих видов промышленности, для транспорта и строительства, даже для быта.

Опытная хозяйка перед стиркой смажет руки силиконовым кремом, который предохранит их не только от воды, но и от разъедающего действия соды или стирального порошка. Сдавая в чистку платье или костюм, мы охотно доплачиваем за несминаемую складку и за «пропитку», благодаря которой платье будет меньше грязниться. И в том и в другом случае нашу одежду на фабрике химической чистки обработают кремнийорганическими жидкостями…

Этот же раздел химической науки подарил нам самые теплостойкие и в то же время самые морозостойкие синтетические каучуки. Температурный интервал работоспособности кремнийорганических каучуков от — 80 до +260°С, и эти каучуки уже давно существуют не в виде экзотических лабораторных образцов, а в виде массовой промышленной продукции.

Для современной электротехники очень важны кремнийорганические лаки, представляющие собой растворы кремнийорганических полимеров. Они обладают отличными электроизоляционными свойствами, устойчивы к атмосферным воздействиям, перепадам температур, солнечной радиации. Вот лишь один пример эффективности подобных материалов в технике. До внедрения кремнийорганических лаков изоляция электродвигателя врубовой машины в условиях шахты служила в среднем 5 месяцев. Когда в качестве изоляции стали применять кремнийорганический лак, срок службы двигателя до первого ремонта вырос до 3 лет.

Подобных примеров можно привести десятки, и число их будет множиться с каждым годом: появляются новые вещества, в состав которых наряду с кремнием и традиционными элементами органического мира входят алюминий, титан и другие металлы. Каждый привносит в молекулу что-то свое, и на каком-то этапе количество переходит в качество.

Популярная библиотека химических элементов. Книга первая. Водород — палладий - i_059.jpg

Академик И. А. Андрианов (1904–1978) первым в мире получил кремнийорганические полимеры — полиорганосилоксаны. Под его руководством проведены работы по синтезу термостойких кремнийорганических полимеров и материалов на их основе, нашедших широкое применение во многих отраслях промышленности 

Многие известные ученые работали и продолжают работать в этой области химии. Советскую школу кремнийоргаников основал академик К. А. Андрианов, который еще в 1937 г. получил первые в мире кремнийорганические полимеры — полиорганосилоксаны.

Кремний и жизнь

В обзорной статье о кремнии, написанной еще лет десять назад, такой раздел был бы необязателен. Слишком мало знала наука о роли кремния в жизни высших животных и человека. Известно было, что кремний (его двуокись) составляет основу скелетов у некоторых морских организмов — радиолярий, диатомей, некоторых губок, морских звезд. Известно также, что он нужен растениям: от злаков и осоки до пальм и бамбука. Чем жестче стебель растения, тем больше в его золе находят кремния. Растения, как и морские животные, берут кремний из воды. И в пресной, и в соленой воде растворено около 3 мг/л кремния (в виде кремниевых кислот и их солей). Роль же кремния в жизни высших животных и человека долгое время оставалась неясной. Было широко распространено мнение о биологической инертности и бесполезности соединений кремния.