Физики-атомщики с этим не соглашались. Им казалось, что температура в недрах звезд недостаточна, чтобы вызвать высвобождение ядерной энергии. На подобные возражения Эддингтон язвительно отвечал: «Не будем спорить с тем, кто считает, что звезды недостаточно горячи для этого процесса: пусть пойдет и поищет себе местечко погорячее». В аду не сыщешь фурии, которая могла бы сравниться с разгневанным физиком-теоретиком! В 1920-х годах ядерная физика была еще молода, и ни у Эддингтона, ни у его противников не хватало убедительных аргументов для продолжения спора. В конце концов оказалось, что Эддингтон прав — температуры в центральных областях звезд и в самом деле достаточно высоки для поддержания ядерных реакций синтеза легких атомов.

Располагая современными знаниями об атомном ядре, можно понять, почему вначале возникли разногласия и как потом удалось от них избавиться. На рисунке 69-а показаны четыре отдельных ядра атома водорода, представляющих собой не что иное, как положительно заряженные элементарные частицы, называемые протонами. На рисунке 69-б изображено ядро атома гелия (Не). Оно состоит из двух протонов и двух нейтронов. Нейтроны — это незаряженные, или нейтральные, частицы. В термоядерной реакции четыре протона соединяются и образуют ядро атома гелия:

4Н → Не + 2е+ + 2n + Энергия.

Из такой символической записи реакции следует, что ее продуктами являются ядро гелия, два позитрона (е+), два нейтрино (n) и энергия. Позитроны, античастицы электронов, имеют ту же массу, что и электроны, но положительный заряд. Если потребовать, чтобы в термоядерной реакции полный электрический заряд оставался неизменным, то две единицы положительного заряда, не вошедшие в ядро атома гелия, должны перейти к каким-то другим продуктам реакции. Такая роль отводится позитронам. Выделение энергии в описанной реакции синтеза происходит по следующей причине. Общая масса четырех участвующих в реакции ядер водорода несколько превышает суммарную массу продуктов реакции (ядра гелия и других четырех легких частиц). Но согласно специальной теории относительности Эйнштейна, при любом природном процессе потеря в массе должна компенсироваться соответствующим выигрышем в энергии. Эта энергия и потерянная масса связаны знаменитой формулой Эйнштейна: Е = Мс2.

В реакции синтеза ядер гелия теряемая масса эквивалентна энергии 26,72 МэВ. Другими словами, часть массы, переходящая в энергию, составляет 0,7 % массы всего водорода, превращающегося в гелий. Это и есть тот резервуар, из которого люди собираются черпать энергию, если им удастся построить термоядерный реактор.

Реакция в таком реакторе несколько отличается от синтеза в недрах Солнца. В термоядерном реакторе на Земле исходным топливом служит тяжелый водород — дейтерий. Его ядро состоит из нейтрона и протона. Для получения ядра атома гелия и лучистой энергии нужно соединить два таких ядра.

Физики-атомщики 1920-х годов возражали против гипотезы Эддингтона потому, что соединить четыре ядра водорода очень трудно. Поскольку протоны положительно заряжены, они отталкивают друг друга в соответствии с законом электростатики, который гласит, что одинаковые заряды отталкиваются. Как же соединить эти одинаковые заряды? В 1920-х годах эта проблема казалась неразрешимой, но в следующем десятилетии с открытием сильного ядерного взаимодействия трудности удалось преодолеть. В ядре гелия на рисунке 78-б имеются два протона. Но как они удерживаются вместе, если одинаковые заряды отталкиваются?

Ответ заключается в том, что внутри ядра действует какая-то сила, гораздо более мощная, чем сила электростатического отталкивания; она-то и связывает вместе четыре частицы (два нейтрона и два протона). Это сильное ядерное взаимодействие распространяется как на нейтроны, так и на протоны, но заметно лишь на очень малом расстоянии. Если протоны сталкиваются с достаточно большими скоростями, они могут сблизиться настолько, что сильное ядерное взаимодействие будет возможно. В газе из водорода с высокой температурой ядра движутся с большими случайными скоростями и, несмотря на электростатическое отталкивание, иногда подлетают друг к другу так близко, что сильное ядерное взаимодействие соединяет их. Температуры в центрах звезд, составляющие от 10 миллионов до 40 миллионов градусов Цельсия, достаточно высоки, чтобы ядра достигли скоростей, при которых возможно их слияние, как и утверждал Эддингтон.

В основе современной теории внутреннего строения звезд лежат четыре уравнения Эддингтона плюс еще одно уравнение, которое описывает скорость выделения энергии в термоядерных реакциях в центральных областях звезды. В 1938 году Ганс Бете решил пятое уравнение и построил полную модель звезды.

Трудно переоценить решающую роль гравитации в этих уравнениях. Чтобы уравновесить гравитационное притяжение и предотвратить катастрофический гравитационный коллапс Солнца, необходимы колоссальные силы давления. Эти силы давления обусловлены высокими температурами и плотностями. Сжимающееся облако межзвездного газа становится звездой в тот момент, когда температура в его центре достигает значения, достаточного для начала ядерных реакций. При попытках достичь высоких температур, подходящих для начала ядерных реакций в земном реакторе, гравитация никак не используется. В недрах Солнца она сдерживает газ, в котором происходит бурное выделение ядерной энергии. На Земле для удержания горячего газа приходится искать другие средства, например магнитное поле. Эти опыты еще далеки от успешного завершения.

Чтобы больше узнать о влиянии гравитации на звезды, проведем мысленный эксперимент. Предположим, мы связали горячую звезду с холодным проводником тепла. Мы знаем, что тепло переходит от горячего тела к холодному, поэтому и в нашем мысленном эксперименте поток тепла потечет от горячей звезды к холодной. Тем не менее нас ждет сюрприз! В обычных условиях, если тепло переходит от горячего тела к холодному, температура горячего тела понижается, а холодного растет. По мере утечки тепла из горячей звезды ее внутреннее давление будет падать и равновесие нарушится, так что звезда сожмется под действием сил гравитации. А при сжатии звезды газ разогревается и температура повышается! Что происходит с другой, холодной звездой? Она получает тепло, давление в ней растет, и ее равновесие также нарушается. Звезда расширяется, так как силы внутреннего давления преобладают над силами гравитации. Но с расширением звезды газ охлаждается, поэтому холодная звезда становится еще холоднее!

Как ни странно такое поведение, нечто подобное действительно происходит в ходе звездной эволюции. Мы уже видели, что в центральном ядре звезды, подобной Солнцу, температура достаточно высока для поддержания реакции синтеза гелия из водорода. Что произойдет, когда водород в ядре иссякнет? Из-за дефицита топлива термоядерный реактор на время «выключится». Это приведет к снижению выработки тепла и к падению давления в ядре, поэтому ядро сжимается и разогревается. Когда его температура повысится примерно до 100 миллионов градусов Цельсия, реактор снова оживет. Однако теперь топливом будет служить уже не водород, а гелий. При такой температуре три ядра гелия могут слиться и образовать ядро углерода. Тем временем для сохранения общего равновесия внешняя оболочка звезды расширится и звезда станет гигантом. Расширение оболочки ведет к охлаждению, так что поверхностная температура звезды упадет. Если температура на поверхности Солнца около 5500 °C, то поверхностная температура звезды-гиганта может понижаться до 3500 °C. Поэтому наше Солнце имеет желтоватый цвет, а цвет звезд-гигантов приближается к красному.

В ходе звездной эволюции процессы сжатия и расширения чередуются вновь и вновь. Пока есть топливо, звезда его сжигает. Когда его запасы иссякают, ядро сжимается и разогревается до тех пор, пока не достигнет температуры, достаточной для начала термоядерной реакции с новым топливом. В этой последовательности появляются ядра все более тяжелых элементов: