Выше мы уже убедились, что концепцию «неопровержимой истины», которой руководствуется в своей деятельности математик-человек, нельзя сформировать посредством какого бы то ни было познаваемого (человеком) набора механических правил, в справедливости которых этот самый человек может быть целиком и полностью уверен. Если мы полагаем, что наш робот способен достичь уровня математических способностей, достижимого, в принципе, для любого человеческого существа (а то и превзойти этот уровень), то в этом случае его(робота) концепция неопровержимой математической истины также должна представлять собой нечто такое, что невозможно воспроизвести посредством набора механических правил, которые можно полагать обоснованными, — т.е. правил, которые может полагать обоснованными математик-человек или, коли уж на то пошло, математик-робот.
В связи с этими соображениями возникает один весьма важный вопрос: чьиже концепции, восприятие, неопровержимые убеждения следует считать значимыми — наши или роботов? Можно ли полагать, что робот действительнообладает убеждениями или способен что-либо осознавать? Если читатель придерживается точки зрения B, то он, возможно, сочтет такой вопрос несколько неуместным, поскольку сами понятия «осознания» или «убеждения» относятся к описанию процесса мышленияи поэтому никоим образом неприменимы к целиком компьютерному роботу. Однако в рамках настоящего рассуждения нет необходимости в том, чтобы наш гипотетический робот и в самом деле обладал какими-то подлинными ментальными качествами, коль скоро мы допускаем, что он способен внешневести себя в точности подобно математику-человеку — в полном соответствии с самыми строгими формулировками как B, так и A. Нам не нужно, чтобы робот действительнопонимал, осознавал или верил; достаточно того, что внешне он проявляет себя в точности так, будто он этими ментальными качествами в полной мере обладает. Подробнее об этом мы поговорим в §3.17.
Точка зрения Bне отличается принципиально от Aв том, что касается ограничений, налагаемых на возможную манеру поведения робота, однако сторонники B, скорее всего, питают несколько меньшие надеждыв отношении тех высот, которых на деле может достичь робот, или вероятности создания вычислительной системы, которую можно было бы полагать способной на эффективное моделирование деятельности мозга человека, оценивающего обоснованность того или иного математического рассуждения. Подобное человеческоевосприятие предполагает все же некоторое понимание смыслазатронутых математических концепций. Согласно точке зрения A, во всем этом нет ничего, выходящего за рамки некоторого свойства вычисления, связанного с понятием «смысла», тогда как Bрассматривает смысл в качестве семантического аспекта мышления и не допускает возможности его описания в чисто вычислительных терминах. В этом мы согласны с точкой зрения Bи отнюдь не ожидаем от нашего робота способности действительно ощущать тонкие семантические различия. Таким образом, сторонники B, возможно, менее (нежели сторонники A) склонны предполагать, что какой бы то ни было робот, сконструированный в соответствии с обсуждаемыми здесь принципами, окажется когда-либо способен на демонстрацию тех внешних проявлений человеческого понимания, какие свойственны математикам-людям. Полагаю, отсюда можно сделать вывод (не такой, собственно, и неожиданный), что сторонников Bбудет существенно легче обратить в приверженцев C, чем сторонников A; впрочем, для нашего дальнейшего исследования разница между Aи Bсущественного значения не имеет.
В качестве заключения отметим, что, хотя истинность математических утверждений нашего робота, получаемых посредством преимущественно восходящей системы вычислительных процедур, носит заведомо предварительный и предположительный характер, следует допустить, что роботу действительно присущ некоторый достаточно «прочный» уровень неопровержимойматематической «убежденности», вследствие чего некоторые из его утверждений (которым он будет присваивать некий особый статус — обозначаемый, скажем, знаком ☆) нужно считать неопровержимо истинными — согласно собственным критериям робота. О допустимости ошибочного присвоения роботом статуса ☆ — пусть роботом же и исправимом — мы поговорим в §3.19. А до той поры будем полагать, что всякое ☆-утверждение робота следует рассматривать как безошибочное.
3.13. Механизмы математического поведения робота
Рассмотрим различные механизмы, лежащие в основе процедур, управляющих поведением робота в процессе получения им ☆-утверждений. Некоторые из этих процедур являются по отношению к роботу внутренними— нисходящие внутренние ограничители, встроенные в модель функционирования робота, а также те или иные заранее определенные восходящие процедуры, посредством которых робот улучшает качество своей работы (с тем, чтобы постепенно достичь ☆-уровня). Разумеется, мы полагаем, что все эти процедуры в принципе познаваемы человеком (хотя окончательный результат совокупного действия всех этих разнообразных факторов вполне может оказаться за пределами вычислительных способностей математика-человека). В самом деле, если мы допускаем, что человеческие существа в один прекрасный день сконструируют робота, наделенного подлинным математическим талантом, то следует непременно допустить и то, что человек способен понять внутренние принципы, в соответствии с которыми будет построен этот робот, иначе любое подобное начинание обречено на провал.
Безусловно, мы отдаем себе отчет в том, что создание такого робота вполне может оказаться многоступенчатым процессом: иначе говоря, возможно, что наш робот-математик будет целиком и полностью построен какими-либо роботами «низшего порядка» (которые сами не способны на подлинно математическую деятельность), а эти роботы, в свою очередь, построены другими роботами еще более низкого порядка. Однако запущена в производство вся эта иерархическая цепочка будет все равно человеком, и исходные правила ее построения (по всей видимости, некая комбинация нисходящих и восходящих процедур) будут в любом случае доступны человеческому пониманию.
Существенно важными для процесса развития робота являются и всевозможные внешниефакторы, привносимые окружением. Внешний мир и в самом деле может обеспечить нашего робота весьма значительным объемом вводимых данных, поступающих как от учителей-людей (или роботов), так и из наблюдений за естественным физическим окружением. Что до естественных внешних факторов, привносимых «безлюдным» окружением, то «непознаваемыми» их, как правило, не считают. Эти факторы могут быть очень сложными, часто они взаимодействуют между собой, и все же эффективное «виртуально-реальное» моделирование существенных аспектов нашего окружения уже вполне осуществимо (см. §1.20). По-видимому, ничто не мешает модифицировать эти модели таким образом, чтобы робот с их помощью получал все, что ему нужно для развития в смысле внешних естественных факторов, — не будем забывать, что вполне достаточно смоделировать типичноеокружение, воспроизводить какое-то реально существующее необходимости нет (см. §§1.7, 1.9).
Вмешательство в процесс людей (или роботов) — т.е. внешних, «искусственных» факторов — может происходить на различных этапах, однако это никоим образом не влияет на существенную познаваемость механизмов этого вмешательства, при условии, разумеется, что мы допускаем возможность каким-то познаваемым образом «механизировать» вмешательство человека. Справедливо ли такое допущение? Думаю, вполне естественно (по крайней мере, для сторонника точки зрения Aили B) предположить, что любое человеческое вмешательство в процесс развития робота и в самом деле можно заменить какими-либо целиком и полностью вычислительными процедурами. Мы же не требуем, чтобы в этом вмешательстве непременно присутствовало что-либо непостижимо мистическое — скажем, некая неопределимая «сущность», какую учитель-человек должен передать своему ученику-роботу в процессе обучения. Мы полагаем, что при обучении роботу необходимо получать всего лишь те или иные фундаментальные сведения, а передачу ему этих сведений проще всего поручить именно человеку. Весьма вероятно, что, как и в случае с учениками-людьми, наиболее эффективной будет передача информации в интерактивной форме, когда поведение учителя зависит от реакции ученика. Однако и это обстоятельство, само по себе, отнюдь не исключает возможности эффективно вычислительного поведения учителя. В конце концов, все наши рассуждения в настоящей главе представляют собой одно сплошное reductio ad absurdum, в рамках которого мы допускаем, что в поведении человеческих существ вообще нет ничего существенно невычислимого. А тем, кто уже и так придерживается точек зрения Cили D(последние, несомненно, склонны скорее поверить в возможность существования упомянутой выше невычислимой «сущности», передаваемой роботу в силу одного лишь человеческого происхождения учителя), наши доказательства в любом случае совершенно не нужны.