3.22. Спасет ли вычислительную модель разума хаос?
Вернемся ненадолго к вопросу о хаосе. Хотя, как неоднократно подчеркивается в этой книге (в частности, в §1.7), хаотические системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что феномен хаоса может иметь весьма значительное отношение к деятельности мозга. В представленных выше рассуждениях я опирался, с одной стороны, на обоснованное, как мне кажется, предположение, согласно которому любое хаотическое вычислительное поведение можно без существенной потери функциональности заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправданное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимойслучайности — в действительностислучайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоняющееся от чистой случайности. (Иногда для описания сложного неслучайного поведения {47} , демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосекрылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соответствующих ситуациях хаотические системы. Хаотической системе в такой ситуации придется очень близко аппроксимировать невычислительное поведениев асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.
И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обойти неутешительное заключение, к которому мы пришли в предыдущем параграфе. В представленных выше рассуждениях эффективная хаотическая неслучайность (т.е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» поведения нашего робота (или сообщества роботов), но полный ансамбль всех возможныхдействий роботов, согласующихся с заданным набором механизмов M. Та же аргументация применима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомянутых механизмов. Впрочем, некоторые случайные элементы (например, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы оперировать этойслучайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество возможных альтернативных робото-историй. Однако само хаотическое поведение нам просто-напросто придется вычислять— в чем нет ничего странного: на практике, в математических примерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в данном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в ☆ M -утверждениях роботов. Даже если ансамбль включает в себя всего одну«историческую линию» сообщества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения ☆ M -статуса такие ошибки будут очень быстро устраняться либо самими их виновниками, либо какими-то другими роботами сообщества. В ансамбле умеренного размера, составленном из подлинно случайных элементов, устранение ошибок будет происходить более эффективно, при дальнейшем же расширении ансамбля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь существенного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.
3.23. Reductio ad absurdum— воображаемый диалог
Многие из представленных в предыдущих разделах рассуждений, мягко говоря, несколько запутаны. Для прояснения ситуации читателю предлагается в качестве этакого резюме воображаемый разговор, состоявшийся в далеком будущем между неким гипотетическим, весьма преуспевающим прикладным специалистом в области ИИ и одним из его наиболее удачных кибернетических созданий. Написан диалог с позиции сильного ИИ. [Примечание: процедура Qв повествовании выступает в роли алгоритма Aиз §2.5, а утверждение G( Q) — в роли незавершающегося вычисления C k( k). То есть к чтению нижеследующего материала можно переходить сразу после §2.5без какого бы то ни было ущерба для понимания.]
Альберт Император имел все основания быть удовлетворенным результатом трудов всей своей жизни. Процедуры, которые он запустил в действие много лет назад, наконец принесли плоды. И вот перед вами точный протокол его беседы с одним из наиболее впечатляющих его творений — роботом выдающихся и потенциально сверхчеловеческих математических способностей по имени Математический Интеллектуальный Киберкомплекс (см. рис. 3.2 ). Обучение робота почти завершено.
Рис. 3.2. Альберт Император и Математический Интеллектуальный Киберкомплекс.
Альберт Император: Просмотрел ли ты статьи, что я давал тебе, — статьи Гёделя, а также и другие, где рассматриваются следствия из его теоремы?
Математический Интеллектуальный Киберкомплекс: Разумеется, причем они оказались даже интересными, хотя и довольно элементарными. Этот ваш Гёдель был, по всей видимости, весьма способным логиком… для человека.
А. И.: Всего лишь «весьма способным»? Да он был, несомненно, одним из величайших логиков всех времен. Возможно, даже первымиз величайших!
М. И. К.: Приношу извинения, я вовсе не намеревался преуменьшать его заслуги. Вам, разумеется, хорошо известно, что я обучен проявлять общее уважение к достижениям людей (по причине того, что люди очень обидчивы), хотя все эти достижения нам, роботам, обыкновенно представляются весьма тривиальными. Мне просто показалось, что уж с тобой-то я могу, по крайней мере, выражать свои суждения просто и открыто.
А. И.: Безусловно, можешь. Прости и ты меня, я был неправ. Так, значит, у тебя не возникло никаких трудностей с пониманием теоремы Гёделя?
М. И. К.: Абсолютно никаких. Уверен, я бы и сам додумался до такой теоремы, если бы у меня было хоть немного больше свободного времени. Но мой разум был занят иными, чрезвычайно увлекательными вопросами, связанными с трансфинитной нелинейной когомологией, которая в последнее время интересует меня гораздо больше. Теорема Гёделя показалась мне очень здравой и непосредственной. Повторюсь, совершенно никаких трудностей у меня с ней не возникло.
А. И.: А вот получи-ка, Пенроуз!
М. И. К.: Пенроуз? Кто такой Пенроуз?
А. И.: Да я тут недавно наткнулся на одну старую книжку. Ничего особенного, не стоило и упоминать. Автор, насколько я помню, утверждал, что то, о чем ты мне сейчас рассказал, принципиально невозможно.