11. Пол и эволюционное древо
Гибрид — от латинского слова hybrida, обозначающего потомка домашней свиньи и дикого кабана. Так в древнем Риме называли потомков отца-римлянина и матери-варварки либо потомков свободного и рабыни.
Прославленные Ван Гогом подсолнухи — воистину чудесное явление мира растений. Родина их — Южная Америка. Первым из европейцев увидел их экзотическую красоту Франсиско Писарро. В стране инков Туантинсуйу, в современном Перу, их считали символами бога солнца и отливали из золота. Жилистый стебель, позволяющий растению поворачиваться вслед за двигающимся по небосводу солнцем, достигает трех метров в высоту, а цветок может быть диаметром в целый метр — буйство красок, пиршество желтых, оранжевых, темно-красных лепестков, окружающих центральный диск со спиральным узором цветков, из которых развиваются семечки.
Ботаник Лорен Ризеберг открыл: подсолнух — особенное растение, причем настолько особенное, что это меняет наши представления об эволюции растений, а возможно, и об эволюции животных. Заинтересовался подсолнухами он, когда работал под руководством Эдварда Шиллинга над магистерской диссертацией в университете Теннесси, изучая мексиканские разновидности подсолнухов. А позже, когда он приступил к работе над кандидатской диссертацией в университете штата Вашингтон, подсолнухи послужили ему еще раз — темой диссертации стал, как он выразился, «вызывающей много споров вопрос о возможности возникновения новых видов посредством гибридизации».
Гибрид — это результат половой связи между различными видами. Межвидовые помеси и у животных, и у растений испокон веку будили интерес натуралистов. Крепкие и выносливые мулы — гибриды лошади и осла — описаны еще в «Илиаде» Гомера. Но и Гомер, и знавшие мулов с древности китайцы были осведомлены об их бесплодности. Надо сказать, самая возможность плодотворной гибридизации противоречит предложенной в 1753 году Линнеем системе классификации живого. В основе ее — предположение о принципиальном различии видов и несмешиваемости их друг с другом. Это же предположение лежит в основе нынешней классификации живых существ. Многие эволюционные биологи и по сей день рассматривают продукт смешения видов, сколько бы он ни был энергичным и выносливым, как эволюционный тупик. Десятилетия это воззрение было краеугольным камнем современного дарвинизма, сутью его «биологической концепции вида», где вид определялся через репродуктивную изоляцию. Дарвин хорошо понимал, что гибридизация ставит под сомнение некоторые положения его теории, и оттого посвятил ей целую главу в книге «О происхождении видов». Он заметил: «Живущие в одной местности виды едва ли сохранили бы различия друг с другом, если бы могли свободно скрещиваться». Но внимательное чтение этой главы открывает неоднозначность дарвиновских взглядов.
Гибридизация приводит к радикально измененному геному потомства по сравнению с геномами родителей, поскольку, как и при генетическом симбиогенезе, сводит в геноме потомства уже готовые гены и последовательности генетически весьма различающихся существ. Конечно, в отличие от генетического симбиогенеза, геномы родителей при гибридизации родственны. Они принадлежат близкородственным видам, а не к разным царствам живого, как, например, бактерия и млекопитающее. Но не следует недооценивать различия между видами при гибридизации. Сотни генов развивались различно с тех пор, как эти виды эволюционно разошлись. И потому геном потомства будет сильно отличаться от родительского. Чтобы гибридизация стала существенной для эволюции, необходимо, чтобы гибриды были способными давать потомство, чтобы могли передавать измененный геном новым поколениям. Для этого они должны разрешить значительные генетические и репродуктивные проблемы. Но даже если проблемы и будут разрешены, будущие поколения потомков-гибридов должны быть в достаточной мере приспособленными и выносливыми, чтобы отвоевать место в экологической нише, занимаемой родителями. Либо гибриды должны обладать новыми оригинальными свойствами, позволяющими им выжить и преуспеть там, где не могут существовать виды-родители. Потому вряд ли стоит удивляться, что в двадцатом столетии большинство биологов не считали гибридизацию способной внести хоть какой-то вклад в эволюцию.
Не надо, однако, удивляться и тому, что были и такие специалисты, которые придерживались обратного мнения. Даже в те годы, когда сформировался и упрочился современный дарвинизм, некоторые ботаники продолжали считать гибридизацию источником эволюционных изменений в растениях, невзирая на то, что говорили по этому поводу коллеги-зоологи. Споры одних с другими частенько принимали весьма напряженный характер.
При гибридизации происходит слияние мужских и женских половых клеток и слияние геномов двух родительских форм жизни. Процесс этот столь сложен, а и возможные последствия столь запутанны и многозначны, что ученые и по сей день не смогли понять их. Известно, что геном новообразованного гибрида подвергается значительной реорганизации. Кроме сложного взаимодействия родительских геномов, в процесс вовлекаются негенетические (эпигенетические) механизмы, изменяющие экспрессию генов. В процессе также могут участвовать многочисленные эндогенные ретровирусы[100].
Ядро клетки растения либо животного содержит двойной набор хромосом, по одной от каждого родителя. Этот набор назван «диплоидным», от греческого слова «двойной». Если половинки набора получены от особей одного вида, они практически идентичны. Но при гибридизации их получают от особей разных видов, и генетические различия между ними велики. В прошлом эволюционные биологи полагали, что при гибридизации происходит удвоение нормального набора хромосом и гибрид получает четверной набор вместо двойного. Увеличение числа хромосом называется «полиплоидия», и наличие четверного набора называется, таким образом, «тетраплоидия». Поскольку тетраплоидия встречается довольно редко, тетраплоидный гибрид вынужден будет скрещиваться с нормальными, диплоидными особями — и потомки их будут нести три набора хромосом, то есть будут триплоидными. А поскольку три набора не могут разделиться надвое в процессе формирования половой клетки, гибридизация неизбежно приводит к стерильности.
Например, гибрид тетраплоидного и диплоидного арбузов триплоидный — и потому не имеет семечек. У мулов немного иначе, поскольку мул — это потомок лошади, имеющей шестьдесят четыре хромосомы, и осла, имеющего шестьдесят две. Мул, получая по половине хромосом от каждого из родителей, имеет шестьдесят три хромосомы — и потому стерилен. Именно такие примеры привели выдающегося генетика, лауреата Нобелевской премии за работы по искусственно вызванным мутациям Германа Дж. Мёллера к заключению о малой роли полиплоидии в эволюции животных, поскольку половое размножение становится невозможным[101].
Мёллер полагал, что пол у большинства животных определяется различиями в хромосомах — как X- и Y-хромосомы у человека — и что триплоидность — обязательная промежуточная стадия в формировании гибридов. Но Мёллер ошибался, причем весьма серьезно. Пол большинства животных определяется не разницей в хромосомах, и триплоидность не является обязательной стадией в формировании гибридов. Именно благодаря таким ошибкам исследование полиплоидии у животных и растений на протяжении целого столетия было неполноценным и недостаточным. Именно с такими предрассудками пришлось бороться Ризебергу в его работе с гибридами подсолнечника.
В 1987 году Ризеберг стал членом исследовательского коллектива в ботаническом саду «Ранчо Санта Анна» в Южной Калифорнии. Главной темой его исследований стала эволюционная история однолетних североамериканских подсолнухов. Как он вспоминал позднее, то время было идеальным для начала исследований по эволюции, поскольку внезапно стал доступным целый ряд новых молекулярных и генетических методов исследования. Цитируя Ризеберга: «Я изучал происхождение дикорастущего в Калифорнии подсолнуха, который считается классическим примером гибридизации. Но исследование на молекулярном уровне показало: это вовсе не гибрид. Полученный результат подтолкнул меня к более широкому изучению гибридизации у подсолнухов».