— Целью было определить, насколько и как изменяются брачные призывы у родителей-гибридов в результате увеличения размера клеток за счет удвоения числа хромосом, ассоциируемого с тетраплоидией.
Надо сказать, что у клеток полиплоидов ядра больше, чем у обычных диплоидов, и клетки, содержащие эти ядра, увеличены в размерах. Это одна из причин, почему гибриды-полиплоиды у растений здоровее и крепче диплоидов — ведь в их клетках больше питательных веществ.
— Моя работа была не более чем студенческой, учебной, — добавила Мэйбл, — но она подтвердила предположение моего руководителя Джима Богарта. Он считает, что удвоение генома может автоматически приводить к репродуктивной изоляции. Брачные призывы триплоидых гибридов и в самом деле оказались иными, нежели призывы их родителей, — как мы и ожидали, они оказались чем-то средним между ними[111].
Джим Богарт — один из ведущих канадских специалистов по лягушкам, и после получения степени бакалавра Мэйбл осталась работать под его руководством над магистерской диссертацией, посвященной исследованию факторов, благоприятствующих гибридизации древесных лягушек. Хотя это происходило еще до того, как стали доступными средства молекулярного анализа, полученные результаты свидетельствовали: репродуктивный успех и успешная эволюция нового гибридного вида сильно зависят от генетической совместимости, достигаемой, предположительно благодаря способности генома распознавать целые хромосомы. Это один из тех сложных механизмов, посредством которых тетраплоидные прежде виды превращаются в диплоидные, — и этот механизм уже наблюдался во многих геномах, включая человеческий.
— В тогдашних условиях наши выводы, — сказала Мэйбл, — несомненно, были очень смелыми. Мы заключили, что генетическая совместимость может быть куда гибче, чем это считалось ранее. Этим результатом я горжусь до сих пор.
Тетраплоидность, то есть удвоение числа хромосом, потенциально способна сильно изменить и усложнить форму жизни. Возникнуть тетраплоидность может двумя способами. Первый — это мутация, предотвращающая уменьшение числа хромосом в процессе формирования половой клетки (аутотетраплоидия); второй — половое соединение различных геномов через гибридизацию (аллотетраплоидия). Поскольку аутотетраплоидия лишь добавляет второй набор хромосом, идентичных первому, сразу приращения генетической сложности не возникает. Но при этом в клетке оказывается множество лишних генов, способных избежать строгого контроля естественного отбора и безнаказанно мутировать, образуя новые гены. При аллотетраплоидии соединяются различные геномы, и это, подобно симбиогенезу, неизбежно влечет за собой резкое увеличение генетической и геномной сложности. Как и симбиогенез, аллотетраплоидия дает толчок горизонтальной, а не вертикальной эволюции, не от предка к потомку, а через соединение различных видов живого.
Хотя гибридизация — в особенности приводящая к полиплоидному потомству — сулит много возможных выгод, она может иметь и негативные последствия. Некоторые из них имеют генетическую природу и слишком сложны, чтобы обсуждать их в этой книге. Но стоит упомянуть, что часть их связана с увеличением клеточного ядра при полиплоидии и клетки в целом. Другие неприятные последствия — это нарушения генома, при которых возникают клетки с неправильным числом хромосом. Эта ситуация называется «анеуплоидией»[112]. При этом могут возникать тяжелые эпигенетические нарушения, приводящие к нарушениям регуляции генов, — что весьма интересует меня как врача. Обо всем упомянутом выше современный генетик-эволюционист обязан знать. Важно сохранять здравую оценку достоинств и недостатков гибридизации, избегая переоценивать либо недооценивать их.
В 1999 году Галлардо с коллегами сообщили об открытии первого тетраплоидного гибридного млекопитающего — живущей в пустыне красной вискачи, lympanoctomys barrerae[113]. Вид этот возник около шести миллионов лет назад, что подтверждает стабильность гибридного генома[114]. Эти же исследователи подтвердили: еще одна недавно описанная разновидность южноамериканских грызунов, Pipanacoctomys aureus, является близкородственным тетраплоидным видом[115]. Сейчас уже известно, что многие роды животных включают гибридные виды, например цзо — гибрид домашней коровы и яка; бифало — гибрид бизона и домашней коровы; лигр — помесь льва и тигра; холпин — гибрид черной косатки и дельфина-афалины; цапля Вурдмана — гибрид белой и большой голубой цапли. Гибридами являются королевская змея-альбинос, маисовый полоз-альбинос, галапагосские вьюрки. Существуют гибриды койотов, волков, динго, шакалов, домашних собак, гибриды различных видов оленей, гибриды полярного медведя и гризли.
Специалисты по охране диких животных и экосистем озабочены сохранением не просто отдельных видов, а генофонда. Чем больше генетическое разнообразие в экосистеме, тем более вероятно ее выживание. А гибридизацию все более широко признают способом сохранения и приумножения генетического разнообразия экосистемы. Например, Брэд Уайт, специалист по генетике диких животных университета Трента, Онтарио, посредством генетического тестирования установил: все две с лишним тысячи выживших в Алгонкинском национальном парке восточных волков несут ДНК койота в геноме. По мнению Уайта, подобная генетическая диверсификация — страховка от внезапных резких изменений в окружающей среде, способных привести к вымиранию вида.
Цитирую Мэйбл: «Причина, по которой полиплоидия стала сейчас предметом первостепенного научного интереса, — это результаты секвенирования генома. Они показали, что все эукариоты многократно проходили через стадию полиплоидии в своей эволюционной истории… Генетическое секвенирование открыло также, что гибридизация в эволюционной истории случалась гораздо чаще, чем считалось ранее, и что геномы — это большей частью мозаика следов предыдущих гибридизаций с множеством видов».
Несомненно, генетическое секвенирование откроет еще многое — и неожиданное — в истории эволюции.
12. Полиплоиды ли мы?[116]
Наши половые клетки — и половые клетки всех прочих существ, населяющих сейчас Землю, прожили сотни миллионов лет — и каждая потенциально способна жить вечно.
В 2006 году по миру разнеслась весть об открытии, способном существенно изменить наши взгляды на эволюцию человека. Открытие это — результат исследований Дэвида Райха и его коллег из Школы медицины Гарвардского университета и Массачусетского технологического института, сравнивавших генетические последовательности геномов человека и шимпанзе[118]. Исследование велось с целью ответа на два вопроса. Первый: как давно существовал гипотетический общий предок шимпанзе и человека? Второй: какие эволюционные механизмы привели к расхождению генеалогических ветвей шимпанзе и человека?
Предыдущие оценки, базирующиеся главным образом на анализе окаменелостей, указывают, что расхождение произошло около семи миллионов лет назад. Практически общим убеждением было, что расхождение случилось из-за медленного накопления мутаций и последующего естественного отбора. Но открылось удивительное — вернее, даже два удивительных обстоятельства. Первое — это более поздняя дата расхождения, чем считалось до того. Как писали Райх с коллегами: «Расхождение случилось не более шести миллионов трехсот тысяч лет назад, а возможно, и позднее». Второе обстоятельство оказалось гораздо труднее понять и принять. Сравнение разных генетических последовательностей у человека и шимпанзе дало разные оценки времени расхождения! Наш геном состоит из двух типов хромосом, двух половых хромосом X и Y и двадцати двух пар неполовых хромосом, называемых «аутосомы». От каждого родителя мы наследуем одну половую хромосомы и двадцать две копии аутосом. Две Х-хромосомы — и ребенок женского пола, X и Y — женского. Все аутосомы указали на приблизительно одинаковое время расхождения, но если «верить» Х-хромосомам, то расхождение произошло гораздо позже. По словам Райха и его коллег: «Данные указывают на колоссальную разницу в генетическом расхождении Х-хромосом в сравнении с аутосомами». Может, это результат некоей странности Х-хромосомы, замедляющей мутации этой хромосомы по сравнению с аутосомами? Но при сравнении хромосом людей и горилл подобных неувязок обнаружено не было. Райх с коллегами написали так: «Для объяснения многочисленных особых черт этого явления мы предлагаем простое, хотя и провокационное объяснение: уже после эволюционного разделения линий человека и шимпанзе происходил обмен генами между ними до окончательного разделения менее чем шесть миллионов триста тысяч лет назад».